精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C的参数方程是 (α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+ ρsinθ+2 =0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

【答案】
(1)解:消去参数得,曲线C的普通方程得 =1
(2)解:将直线l 的方程化为普通方程为x+ y+2 =0.

设Q( cosα,sinα),则M( cosα,1+ sinα),

∴d= =

∴最小值是


【解析】(1)消去参数,将C的参数方程化为普通方程;(2)将直线l 的方程化为普通方程为x+ y+2 =0.设Q( cosα,sinα),则M( cosα,1+ sinα),利用点到直线的距离公式,即可求线段PQ的中点M到直线l的距离的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,E,F分别是AB,CD1的中点,AA1=AD=1,AB=2.
(1)求证:EF∥平面BCC1B1
(2)求证:平面CD1E⊥平面D1DE;
(3)在线段CD1上是否存在一点Q,使得二面角Q﹣DE﹣D1为45°,若存在,求 的值,不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 ,以直角坐标系原点为极点, 轴正半轴为极轴建立极坐标系。
(1)求曲线C的极坐标方程;
(2)若直线 的极坐标方程为 ,求直线 被曲线C截得的弦长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,两焦点之间的距离为4.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1﹣an}是等差数列;
(2)求数列{ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E,F分别是CC1 , AD的中点,那么异面直线OE和FD1所成角的余弦值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(kx+a)ex的极值点为﹣a﹣1,其中k,a∈R,且a≠0.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a﹣2|x平行,求l的方程;
(2)若a∈[1,2],函数f(x)在(b﹣ea , 2)上为增函数,求证:e2﹣3≤b<ea+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数 的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案