精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E,F分别是CC1 , AD的中点,那么异面直线OE和FD1所成角的余弦值等于

【答案】
【解析】解:取BC的中点G.连接GC1 , 则GC1∥FD1 , 再取GC的中点H,连接HE、OH,则
∵E是CC1的中点,∴GC1∥EH
∴∠OEH为异面直线所成的角.
在△OEH中,OE= ,HE= ,OH=
由余弦定理,可得cos∠OEH= = =
所以答案是:
【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于(
A.{3,5}
B.{3,4}
C.{﹣9,3}
D.{﹣9,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是(
A.(﹣∞,0)
B.(0,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex , g(x)=lnx,若f(t)=g(s),则当s﹣t取得最小值时,f(t)所在区间是(
A.(ln2,1)
B.( ,ln2)
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是 (α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+ ρsinθ+2 =0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣k(x﹣1)
(1)求f(x)的单调区间;并证明lnx+ ≥2(e为自然对数的底数)恒成立;
(2)若函数f(x)的一个零点为x1(x1>1),f'(x)的一个零点为x0 , 是否存在实数k,使 =k,若存在,求出所有满足条件的k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的长轴长为 ,左焦点的坐标为(﹣2,0);
(1)求C的标准方程;
(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且 ,试求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)如果f(x)在x=0处取得极值,求k的值;
(Ⅱ)求函数f(x)的单调区间;
(III)当k=0时,过点A(0,t)存在函数曲线f(x)的切线,求t的取值范围.

查看答案和解析>>

同步练习册答案