精英家教网 > 高中数学 > 题目详情
已知向量(ω>0),函数,且f(x)图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所对的边,且满足a2+c2﹣b2=ac,求角B的大小以及f(A)的取值范围.
解:(1)∵向量
=sinωx+cosωx==
∵f(x)图象上一个最高点的坐标为
与之相邻的一个最低点的坐标为
,∴T=π,
于是
所以
(2)∵a2+c2﹣b2=ac,

又0<B<π,
.∴
.于是

所以f(A)∈[﹣2,2].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OB
=(2,0),
OC
=(2,2),
CA
=(
2
cosθ,
2
sinθ)
α为
OA
OB
的夹角,则α的取值范围是
[
π
12
12
]
[
π
12
12
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,1)
,当x>0时,定义函数f(x)=
a
b
|
a
|+|
b
|

(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,
①证明:Sn<2a;
②当a=1时,证明:an
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,1)
,当x>0时,定义函数f(x)=
a
b
|
a
|+|
b
|

(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,则:
①当a=1时,证明:an
1
2n

②对任意θ∈[0,2π],当2asinθ-2a+Sn≠0时,
证明:
2asinθ+2a-Sn
2asinθ-2a+Sn
4a-Sn
Sn
2asinθ+2a-Sn
2asinθ-2a+Sn
Sn
4a-Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(2, 0),  
OC
=
AB
=(0,  1)
,动点M(x,y)到直线y=1的距离等于d,并且满足
OM
 • 
AM
=k(
CM
 • 
BM
-d2)
(其中O是坐标原点,k∈R).
(1)求动点M的轨迹方程,并说明轨迹是什么曲线;
(2)当k=
1
2
时,求|
OM
+2
AM
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题,其中正确的是(  )
①已知向量
α
β
,则“
α
β
=0
”的充要条件是“
α
=
0
β
=
0
”;
②已知数列{an}和{bn},则“
lim
n→∞
anbn=0
”的充要条件是“
lim
n→∞
an=0
lim
n→∞
bn=0
”;
③已知z1,z2∈C,则“z1•z2=0”的充要条件是“z1=0或z2=0”;
④已知α,β∈R,则“sinα•cosβ=0”的充要条件是“α=kπ,(k∈Z)或β=
π
2
+kπ,(k∈Z)

查看答案和解析>>

同步练习册答案