精英家教网 > 高中数学 > 题目详情
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点,
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求证AM⊥平面BDF;
(Ⅲ)求二面角A-DF-B的大小。
解:(Ⅰ)设AC∩BD=O,连结OE,
∵O、M分别是AC、EF的中点,ACEF是矩形,
∴四边形AOEM是平行四边形,
∴AM∥OE,
∵OE平面BDE,平面BDE,
∴AM∥平面BDE。
(Ⅱ)∵BD⊥AC,BD⊥AF,且AC交AF于A,
∴BD⊥平面AE,
又因为AM平面AE,
∴BD⊥AM,
∴AD=,AF=1,OA=1,
∴AOMF是正方形,
∴AM⊥OF,
又AM⊥BD,且OF∩BD=O,
∴AM⊥平面BDF。
(Ⅲ)设AM∩OF=H,过H作HG⊥DF于G,连结AG,
由三垂线定理得AG⊥DF,
∴∠AGH是二面角A-DF-B的平面角,


∴∠AGH=60°,
∴二面角A-DF-B的大小为60°。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
MN
BN
最小时,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

同步练习册答案