精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前四项的和A4=60,第二项与第四项的和为34,等比数列{bn}的前四项的和B4=120,第二项与第四项的和为90.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,且{cn}的前n项和为Sn,求Sn
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知得
a2+a4=34
a1+a3=26
,从而求出an=4n+5(n∈N+).由题意知
b1+b3=30
b2+b4=90
,从而求出bn=3n
(2)由cn=an•bn=(4n+5)•3n,由此能求出Sn=
1
2
[(4n+3)•3n+1-9].
解答: (本小题12分)
解:(1)∵等差数列{an}的前四项的和A4=60,第二项与第四项的和为34,
a2+a4=34
A4=60
,即
a2+a4=34
a1+a3=26

∴2d=8.
解得d=4,a1=9.
∴an=4n+5(n∈N+).
∵等比数列{bn}的前四项的和B4=120,第二项与第四项的和为90.
由题意知
B4=120
b2+b4=90
,即
b1+b3=30
b2+b4=90

解得q=3,b1=3,
∴bn=3×3n-1=3n(n∈N+).(6分)
(2)由cn=an•bn=(4n+5)•3n
∴Sn=9•3+13•32+17•33+…+(4n+5)•3n
两边同乘以3,得
3Sn=9•32+13•33+17•34+…+(4n+1)•3n+(4n+5)•3n+1
两式相减,得
-2Sn=9•3+4•32+4•33+…+4•3n-(4n+5)•3n+1
=27+4•
32(1-3n-1)
1-3
-(4n+5)•3n+1
=27+2•3n+1-18-(4n+5)•3n+1
∴Sn=
1
2
[(4n+3)•3n+1-9].(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD是正方形,PD⊥平面ABCD,点E是BC中点,点F在PB上,且PE=2FB.
(1)求证:AC⊥平面AEF;
(2)求证:PD∥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函数f(x)的最小正周期和单调增区间;
(Ⅱ)在给出的直角坐标系中,画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+bx2+cx+d在(-∞,0]上为增函数,在[0,6]上为减函数,且方程f(x)=0的三个根分别为1,x1,x2
(1)求实数b的取值范围;
(2)求x12-4x1x2+x22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市举办歌唱比赛,邀请了A、B、C、D四位资深音乐人担任评委,按照节目程序,每一位选手取得决赛资格后可通过抽签的方式选择一位评委作为导师,且他们对导师的选择是相互独立的,某组共有甲、乙、丙、丁四位选手取得了决赛资格,获得了选择导师的机会.
(Ⅰ)求甲、乙、丙三人都选择A为导师的概率;
(Ⅱ)求四位选手至少有一人选择B作为导师的概率;
(Ⅲ)设四位选手选择C为导师的人数ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和记为Sn,已知a10=30,a20=50.
(1)求通项{an};
(2)令Sn=242,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,M、N分别为BB1、A1C1的中点.
(1)求证:AB⊥CB1
(2)求证:MN∥平面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{am}的公差d不为0,Sn是其前n项和,给出下列命题:
①若d>0,且S3=S8,则S5和S6都是{Sm}中的最小项;
②给定n,对于一切k∈N+(k<n),都有an-k+an+k=2am
③若d<0,则{Sn}中一定有最大的项;
④存在k∈N+,使ak-ak+1和ak-ak-1同号;
⑤S2013>3(S1342-S671).
其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案