精英家教网 > 高中数学 > 题目详情
如图所示,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则
AA1
AM
≥1的概率p=(  )
A、
3
4
B、
1
2
C、
1
4
D、
1
8
考点:几何概型
专题:概率与统计
分析:本题是几何概型问题,欲求点M满足
AA1
AM
≥1的概率,先以A为原点建立空间直角坐标系,由数量积公式得出点M到平面ABCD的距离大于等于
1
2
,点M的轨迹是正方体的一部分,求出其体积,再根据几何概型概率公式结合正方体的体积的方法求解即可.
解答: 解:正方体的体积为V=8,
以A为原点建立空间直角坐标系,AB为x轴,AD为y轴,AA1为z轴.
那么A(0,0,0),A1(0,0,2)
设M(x,y,z),那么x,y,z∈[0,2]
AM
=(x,y,z),
AA1
=(0,0,2)
AA1
AM
≥1,即2z≥1,z
1
2

即点M与平面ABCD的距离大于等于
1
2

点M的轨迹是正方体的
3
4

其体积为:V1=
3
4
×8=6

AA1
AM
≥1的概率p=
6
8
=
3
4

故选:A.
点评:本题主要考查几何概型、几何概型的应用、几何体的体积等基础知识,考查空间想象能力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨,
(Ⅰ)按原计划,“十二五”期间该城市共排放SO2约多少万吨?
(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年的SO2年排放量控制在6万吨以内,求p的取值范围.
(参考数据
8
2
3
≈0.9505,
9
2
3
≈0.9559).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD,ADEF均为正方形,∠CDE=90°,则异面直线BE与CD所成的角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①设α是平面,m、n是两条直线,如果m?α,n?α,m、n两直线无公共点,那么n∥α;
②设α是一个平面,m、n是两条直线,如果m∥α,n∥α,则m∥n;
③若两条直线都与第三条直线平行,则这两条直线平行;
④三条直线交于一点,则它们最多可以确定3个平面.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
f(4-x)
2-x
,x>-2
,x≤-2
在[2,+∞)上为增函数,且f(0)=0,则f(x)的最小值是(  )
A、f(2)B、f(0)
C、f(-2)D、f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若m∥n,m⊥α,则n⊥α
C、若m∥α,m∥β,则α∥β
D、若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,且a2013+a2015=
2
0
4-x2
dx,则a2014(a2012+2a2014+a2016)的值为(  )
A、π2
B、2π
C、π
D、4π2

查看答案和解析>>

科目:高中数学 来源: 题型:

空间中一正方形的边长为3.一平面使得A、B、C、D四点到的距离都为1,则这样的平面有(  )
A、2个B、4个C、5个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}中,a1=1,Sn为数列{an}的前n项和.
(Ⅰ)若数列{an},{an2}都是等差数列,求数列{an}的通项公式;
(Ⅱ)若2Sn=an2+an,试比较
1
a1a2
+
1
a2a3
+…+
1
anan+1
与1的大小.

查看答案和解析>>

同步练习册答案