(08年银川一中三模文)(12分) 如图,在四棱锥S-ABCD中,SA=AB=2,SB=SD=2,底面ABCD是菱形,且∠ABC=60°,E为CD的中点.
(1)证明:CD⊥平面SAE;
(2)侧棱SB上是否存在点F,使得CF∥平面SAE?并证明你的结论.
科目:高中数学 来源: 题型:
(08年银川一中三模文) (12分)现有编号分别为1,2,3,4,5的五个不同的物理题和编号分别为6,7,8,9的四个不同的化学题.甲同学从这九个题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号 (x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”.
(1)共有多少个基本事件?并列举出来;
(2)求甲同学所抽取的两题的编号之和小于17但不小于11的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年银川一中三模文)(12分) 已知椭圆C:(a>b>0),点F1、F2分别是椭圆的左、右焦点,点P(2,)在直线x=上,且|F1F2|=|PF2|,直线:y=kx+m为动直线,且直线与椭圆C交于不同的两点A、B。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足(O为坐标原点),求实数的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com