【题目】如图,三棱柱
中,
,
,平面
平面
.
![]()
(1)求证:
;
(2)若
,直线
与平面
所成角为
,
为
的中点,求二面角
的余弦值.
【答案】(1)见解析(2)![]()
【解析】
(1)过点C作CO⊥AA1,则CO⊥平面AA1B1B,CO⊥OB,推导出Rt△AOC≌Rt△BOC,从而AA1⊥OB,再由AA1⊥CO,得AA1⊥平面BOC,由此能证明AA1⊥BC.
(2)以O为坐标原点,OA,OB,OC所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B1﹣A1D﹣C1的余弦值.
(1)过点
作
,垂足为
,
![]()
因为平面
平面
,
所以
平面
,故
,
又因为
,
,
,
所以
,故
,
因为
,所以
,
又因为
,所以
平面
,故
.
(2)以
为坐标原点,
,
,
所在直线为
,
,
轴,建立空间直角坐标系
,
![]()
因为
平面
,
所以
是直线
与平面
所成角,
故
,
所以
,
,
,
,
,
,
,
,
设平面
的法向量为
,则
,所以
,
令
,得
,
因为
平面
,
所以
为平面
的一条法向量,
,
,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着
的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )
![]()
A.样本中的女生数量多于男生数量
B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量
C.样本中的男生偏爱物理
D.样本中的女生偏爱历史
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,曲线
,且
与
的焦点之间的距离为
,且
与
在第一象限的交点为
.
(1)求曲线
的方程和点
的坐标;
(2)若过点
且斜率为
的直线
与
的另一个交点为
,过点
与
垂直的直线与
的另一个交点为
.设
,试求
取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.
![]()
(1)试比较甲、乙两班分别抽取的这10名同学身高的中位数大小;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高176cm的同学被抽到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点.例如y=| x |是
上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数
是
上的“平均值函数”.
②若
是
上的“平均值函数”,则它的均值点x0≥
.
③若函数
是
上的“平均值函数”,则实数m的取值范围是
.
④若
是区间[a.,b] (b>a.≥1)上的“平均值函数”,
是它的一个均值点,则
.
其中的真命题有_________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
![]()
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com