【题目】已知曲线,曲线,且与的焦点之间的距离为,且与在第一象限的交点为.
(1)求曲线的方程和点的坐标;
(2)若过点且斜率为的直线与的另一个交点为,过点与垂直的直线与的另一个交点为.设,试求取值范围.
【答案】(1) , (2) ,
【解析】试题分析:(1)根据已知求得的焦点坐标,根据两条曲线的焦点距离列方程,可求得曲线焦点的坐标,进而求得抛物线方程.联立抛物线方程和椭圆方程,解方程组求得点的坐标.(2)当直线斜率不存在时,求得两点的坐标,进而求得的值.当直线的斜率存在时,设出直线的方程,联立直线的方程和椭圆的方程,解出点的坐标.同理联立直线的方程和抛物线的方程,解出点的坐标,利用弦长公式求得的长度,最后求得得取值范围.
试题解析:
(1)曲线C1的焦点坐标为,曲线C2的焦点坐标为,由与的焦点之间的距离为2,得,解得,∴的方程为.
由,解得,
(2)当直线的斜率不存在时,
由题意可知, , , 则,
当直线AB的斜率存在时,
∴设直线AB的方程为y﹣1=k(x﹣2),即y=kx﹣2k+1,
由,得(2k2+1)x+4k(1﹣2k)x+2(1﹣2k)2﹣6=0
则,∵xA=2,∴,
又直线AC的方程为,由,得,则,∵xA=2,∴,
,
同理,------9分
,-
即.
综上所述:
科目:高中数学 来源: 题型:
【题目】恩格尔系数(记为)是指居民的食物支出占家庭消费总支出的比重.国际上常用恩格尔系数来衡量一个国家和地区人民生活水平的状况.联合国对消费水平的规定标准如下表:
家庭类型 | 贫穷 | 温饱 | 小康 | 富裕 | 最富裕 |
实施精准扶贫以来,根据对某山区贫困家庭消费支出情况(单位:万元)的抽样调查,2018年每个家庭平均消费支出总额为2万元,其中食物消费支出为1.2万元预测2018年到2020年每个家庭平均消费支出总额每年的增长率约是30%,而食物消费支出平均每年增加0.2万元,预测该山区的家庭2020年将处于( )
A.贫困水平B.温饱水平C.小康水平D.富裕水平
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnxx2,g(x)x2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值;
(Ⅲ)若m=﹣1,且正实数x1,x2满足F(x1)=﹣F(x2),求证:x1+x21.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由中央电视台综合频道()和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了两个地区共100名观众,得到如下的列联表:
非常满意 | 满意 | 合计 | |
| |||
合计 |
已知在被调查的100名观众中随机抽取1名,该观众是地区当中“非常满意”的观众的概率为0.35,且.
(1)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的地区的人数各是多少?
(2)在(1)抽取的“满意”的观众中,随机选出2人进行座谈,求至少有1名是地区观众的概率?
(3)完成上述表格,并根据表格判断是否有90%的把握认为观众的满意程度与所在地区有关系?
附:参考公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂每月生产一种投影仪的固定成本为万元,但每生产台,需要加可变成本(即另增加投入)万元,市场对此产品的月需求量为台,销售的收入函数为(万元)且,其中是产品售出的数量(单位:百台).
(1)求月销售利润(万元)关于月产量(百台)的函数解析式;
(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的离心率为, , 分别为椭圆的上顶点和右焦点, 的面积为,直线与椭圆交于另一个点,线段的中点为.
(1)求直线的斜率;
(2)设平行于的直线与椭圆交于不同的两点, ,且与直线交于点,求证:存在常数,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com