精英家教网 > 高中数学 > 题目详情

已知平面上一点,若直线上存在点使得,则称直线为“切割型直线”.

下列直线中是“切割型直线”的是                                              (    )

(A)                              (B)          

(C)                       (D)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•桂林一模)如图,在直三棱柱ABC-A1B1C1中,已知AB=AC,F为BB1上一点,BF=BC=2,FB1=1,D为BC中点,E为线段AD上不同于点A、D的任意一点.
(Ⅰ)证明:EF⊥FC1
(Ⅱ)若AB=
2
,是否存在E满足EF与平面FA1C1所成的角为arcsin
30
6
?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

科目:高中数学 来源:江苏期末题 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.
已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市如皋中学高二(上)质量检测数学试卷(解析版) 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

同步练习册答案