【题目】设函数(为常数,是自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在内存在两个极值点,求的取值范围.
【答案】(1)单调递减区间为单调递增区间为.(2)
【解析】分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)函数在内存在两个极值点,等价于它的导函数在内存内有两个不同的零点. 分三种情况讨论,分别利用导数研究函数的单调性,结合函数图,利用两点存在定理列不等式组,从而可得符合题意的的取值范围.
详解:(Ⅰ)的定义域为,
当时,,
令则
当时, 单调递减;
当 单调递增,
的单调递减区间为单调递增区间为.
(Ⅱ)由(Ⅰ)知,时,函数在内单调递减,
故在内不存在极值点;
当,设函数.
,
当时,
当时,,单调递增,
故故在内不存在两个极值点;
当时,
得时,,函数单调递减,
时,,函数单调递增,
函数的最小值为
函数在内存在两个极值点
当且仅当
解得:
综上所述,函数在内存在两个极值点时,的取值范围为.
科目:高中数学 来源: 题型:
【题目】设k>0,函数f(x)=+x+kln|x﹣1|.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)有两个极值点,且0<θ<π时,证明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥P﹣ABC,点P、A、B、C都在半径为的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).
y | 价格满意度 | |||||
1 | 2 | 3 | 4 | 5 | ||
服 | 1 | 1 | 1 | 2 | 2 | 0 |
2 | 2 | 1 | 3 | 4 | 1 | |
3 | 3 | 7 | 8 | 8 | 4 | |
4 | 1 | 4 | 6 | 4 | 1 | |
5 | 0 | 1 | 2 | 3 | 1 |
(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养正中学新校区内有一块以O为圆心,R(单位:米)为半径的半圆形荒地(如图),校总务处计划对其开发利用,其中弓形BCD区域(阴影部分)用于种植观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售。已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。
(1)设(单位:弧度),用表示弓形BCD的面积
(2)如果该校总务处邀请你规划这块土地。如何设计的大小才能使总利润最大?并求出该最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.
(Ⅰ)若点O到直线l的距离为 , 求直线l的方程;
(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com