精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别是A、B、C的对边.若向量
m
=(2,0)与
n
=(sinB,1-cosB)所成角为
π
3

(I)求角B的大小;
(Ⅱ)若b=
3
,求a+c的最大值.
(I)由题意得cos
π
3
=
m
n
|
m
|•|
n
|
=
2sinB
2
sin2B+(1-cosB)2
=
1
2
,…(2分)
2sinB
2-2cosB
=
1
2

∴2sin2B=1-cosB,2cos2B-cosB-1=0,…(4分)
∴cosB=-
1
2
或cosB=1(舍去),…(5分)
∵0<B<π,
∴B=
3
.…(6分)
(II)由(I)知A+C=
π
3

a
sinA
=
c
sinC
=
b
sinB
=
3
sin
3
=2,…(7分)
∴a+c=2sinA+2sinC…(8分)
=2[sinA+sin(
π
3
-A)]
=2(sinA+
3
2
cosA-
1
2
sinA)
=2sin(A+
π
3
),…(9分)
∵0<A<
π
3

π
3
<A+
π
3
3
.…(10分)
3
2
<sin(A+
π
3
)≤1,
∴a+c=2sin(A+
π
3
)∈(
3
,2],
故a+c的最大值为2.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案