精英家教网 > 高中数学 > 题目详情

设函数,其对应的图像为曲线C;若曲线C过,且在点处的切斜线率
(1)求函数的解析式
(2)证明不等式.

(1) ;(2)详见解析.

解析试题分析:(1)由题设可得两个方程: ①,  ②.解这个方程组,求得的值,便得函数的解析式.(2)要证明不等式只需证)的最大值小于等于0即可,而利用导数很易求得的最大值,从而使问题得证.
试题解析:(1)由 
∵曲线C过     ∴   ①                 2分
又∵曲线C在点处的切斜线率
  ②                          4分
联立①②解之得                       5分
∴函数的解析式为              6分
(2)由(1)知其定义域为
),则         8分

),解之得         10分
∴函数 上单调递增,在 上单调递减,    12分
,所以的最大值为0,故当时,.  13分
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数存在极值点,求实数的取值范围;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,令(),()为曲线上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在定义域内为增函数,求实数的取值范围;
(2)设,若函数存在两个零点,且实数满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,若对任意的恒成立,求实数的值;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

同步练习册答案