精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.

(1)求椭圆C的方程:

(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

 

【答案】

(1)(2)存在,使得以为直径的圆恒过点

【解析】

试题分析:(1)因为离心率为在椭圆上.所以利用待定系数法求出长半轴的长和短半轴的长.从而写出椭圆的标准方程.本小题要求解方程组能力较强.虽然本小题属于较基础的题目,但是运算也是这道题难点,否则会影响到下一题的得分.

(2)通过假设的坐标,写出直线.并求出它们与准线方程的交点坐标.如果存在则点是在以线段为直径的圆上,所以通过向量的垂直可得一个关于的等式.又因为符合椭圆的方程.所以可以求出结论.

试题解析:(1)由得:,        1分

从而有:

在椭圆上,故有,解得

所以,椭圆的方程为:.        4分

(2)设,由(1)知:.

则直线的方程为:,由所以

同理得:. 6分

假设存在点,使得以为直径的圆恒过点,即:.

在椭圆上,∴ .         10分

代入上式得,解得或7.

所以,存在,使得以为直径的圆恒过点.         12分

考点:1.待定系数求椭圆的方程.2.向量的数量积.3.知识的转化化归思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案