精英家教网 > 高中数学 > 题目详情
已知正四棱柱,点E为的中点,F为的中点。
⑴求与DF所成角的大小;
⑵求证:
⑶求点到面BDE的距离。
(1)(2)证明见解析(3)
(1)取中点,连,则的中点N,连所成的角。.
过N作
所成的角为
(2)连BE,则为等腰三角形,
平面
(3)可知到面BDE的距离为,则
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,,且,侧面底面是等边三角形.
(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是直角梯形,平面
(1) 证明:
(2) 在上是否存在一点,使得∥平面?若存在,找出点,并证明:∥平面;若不存在,请说明理由;
(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图正方体ABCD-中,E、F、G分别是、AB、BC的中点.
  (1)证明:⊥EG;
  (2)证明:⊥平面AEG;
  (3)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1中,棱长为,M为正方形DCC1D1的中心,E、F分别为A1D1、BC的中点
(1)求证:AM⊥平面B1FDE;
(2)求点A到平面EDFB1的距离;
(3)求二面角A-DE-F的大小。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,
交DP于F,求证:四边形BCFE是梯形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是
A.24B.36C.44D.56

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证://平面;
(Ⅲ)求异面直线所成的角.

查看答案和解析>>

同步练习册答案