精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,棱长为,M为正方形DCC1D1的中心,E、F分别为A1D1、BC的中点
(1)求证:AM⊥平面B1FDE;
(2)求点A到平面EDFB1的距离;
(3)求二面角A-DE-F的大小。
 
(1)见解析(2)(3)
(1)证明:连接AM,过M作MG⊥CD于G,连接AG
∵正方体ABCD-A1B1C1D1,MG⊥CD
∴MG⊥平面ABCD
又∵M为正方形DCC1D1的中心,MG⊥CD
∴G为CD中点
在正方形ABCD中,F为CB中点 ∴CF=DG
又∵AD="DC     " ∠DCF=∠ADG=Rt∠
∴△ADG≌△DCF    ∴∠AGD=∠DFC    ∴AG⊥DF
由MG⊥平面ABCD,AG⊥DF可得AM⊥DF,
同理可得AM⊥DE
∴AM⊥平面B1FDE
(2)设A到平面DEB1F的距离为
∵E到平面ADF的距离为
  ∴
又∵    


              
(3)过F作FP⊥AD于P,过P作PQ⊥DE于Q,连接FQ
∵FP⊥平面DEP,PQ⊥DE
∴FQ⊥DE
∴∠FQP为二面角A-DE-F的平面角


在R t△FPQ中     
∴二面角A-DE-F的大小为 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.
(1)求证:AC⊥PD;
(2)求二面角E—AC—B的正切值;


 
(3)求三棱锥P—CDE与三棱锥P—ABC的体积之比.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱柱,点E为的中点,F为的中点。
⑴求与DF所成角的大小;
⑵求证:
⑶求点到面BDE的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,△ABF、△CDE是等边三角形,CD=1,EF=BC=1,EF//BC,M为EF的中点.

(1)证明MO⊥平面ABCD
(2)求二面角E—CD—A的余弦值
(3)求点A到平面CDE的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC—A1B1C1中,∠ABC=90°,M、N分别为BB1、A1C1的中点。
(Ⅰ)求证:AB⊥CB1
(Ⅱ)求证:MN//平面ABC1


 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=
(I)       求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;     
(3)求异面直线AB、CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB∶AD=∶1,F是AB的中点.
  (1)求VC与平面ABCD所成的角;
  (2)求二面角V-FC-B的度数;
  (3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?
(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,
,以∠BAC为例。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线a、b是不互相垂直的异面直线,平面α、β满足aα,bβ,则这样的平面α、β(    )
A.只有一对B.有两对
C.有无数对D.不存在

查看答案和解析>>

同步练习册答案