精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC—A1B1C1中,∠ABC=90°,M、N分别为BB1、A1C1的中点。
(Ⅰ)求证:AB⊥CB1
(Ⅱ)求证:MN//平面ABC1


 

 
见解析
(1)在直三棱柱ABC—A1B1C1中,
侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,
∵∠ABC=90°,即AB⊥BC,
∴AB⊥平面BB1C­1C                                       
∵CB1平面BB1C1C,
∴AB⊥CB1.                                             
(2)证法一
取AA1的中点E,连NE、ME,
∵在△AA1C­1中,N、E是中点,


 
∴NE//AC

又∵M、E分别是BB1、AA1的中点,            
∴ME//BA,
又∵AB∩AC1=A,
∴平面MNE//平面ABC1
而MN平面MNE,
∴MN//ABC1.
证法二
取AC1的中点F,连BF、NF
在△AA1C1中,N、F是中点,
∴NFAA1
又∵BMAA1
∴EFBM,
故四边形BMNF是平行四边形,
∴MN//BF,………………10分
而EF面ABC1,MN平面ABC1,∴MN//面ABC1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1中,棱长为,M为正方形DCC1D1的中心,E、F分别为A1D1、BC的中点
(1)求证:AM⊥平面B1FDE;
(2)求点A到平面EDFB1的距离;
(3)求二面角A-DE-F的大小。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,
交DP于F,求证:四边形BCFE是梯形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体中,分别是中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)若在棱上有一点,使平面,求的比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是
A.24B.36C.44D.56

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一个圆锥的底面半径为2cm,高为      6cm,其中有一个高为  cm的内接圆柱.   
(1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证://平面;
(Ⅲ)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中,的中点,
(1)求证:
(2)求点到平面的距离;
(3)判断与平面的位置关系,并证明你的结论.
 

查看答案和解析>>

同步练习册答案