精英家教网 > 高中数学 > 题目详情
如图,一个圆锥的底面半径为2cm,高为      6cm,其中有一个高为  cm的内接圆柱.   
(1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.
 
(1) (2)
(1) 解:设所求的圆柱的底面半径为
则有,即.
 
(2)由(1)知当时,这个二次函数有最大值为
所以当圆柱的高为3cm时,它的侧面积最大为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,正方体的棱长为2EAB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1CE所成角的余弦值;(Ⅲ)求点B到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC—A1B1C1中,∠ABC=90°,M、N分别为BB1、A1C1的中点。
(Ⅰ)求证:AB⊥CB1
(Ⅱ)求证:MN//平面ABC1


 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。

(Ⅰ)求证:DM∥平面APC;
(Ⅱ)若BC=4,AB=20,求三棱锥D—BCM的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB∶AD=∶1,F是AB的中点.
  (1)求VC与平面ABCD所成的角;
  (2)求二面角V-FC-B的度数;
  (3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?
(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,
,以∠BAC为例。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,MN分别是CDSC的中点,SA⊥底面ABCDSA=AD=1,AB=.
(1)求证:MN⊥平面ABN
(2)求二面角A—BNC的余弦值.


 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,正三棱柱的底面边长为,侧棱长为,点在棱上.
(1)若,求证:直线平面
(2)是否存在点,使平面⊥平面,若存在,请确定点的位置,若不存在,请说明理由;
(3)请指出点的位置,使二面角平面角的大小为

查看答案和解析>>

同步练习册答案