精英家教网 > 高中数学 > 题目详情
若正三角形的一个顶点在原点,另两个顶点在抛物线上,则这个三角形的面积为         

试题分析:设正三角形在第一象限的点为,由正三角形性质可得,点在抛物线上得  
点评:本题利用抛物线的对称性可知正三角形两顶点关于x轴对称,因此求得即可得到三角形的边长
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若的大小为                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且

(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线与抛物线的另一交点为与抛物线的另一交点为,记直线的斜率为
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).

(1)证明:(a+1)(y0+1)=1
(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的方程为,过左焦点F1作斜率为的直线交双曲线的右支于点P,且轴平分线段F1P,则双曲线的离心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程 表示焦点在y轴上的双曲线,则k的取值范围是(   )
A.3<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

同步练习册答案