精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.
(1)(2)(3)利用直线MAMB的倾斜角互补,
证明直线MAMBx轴始终围成一个等腰三角形

试题分析:解:(Ⅰ)设椭圆方程为
 解得 
∴椭圆的方程为.             ………………………… 4分
(Ⅱ)(ⅰ)由直线平行于OM,得直线的斜率
轴上的截距为m,所以的方程为
 得.
又直线与椭圆交于A、B两个不同点,
,于是. ……………… 6分
为钝角等价于,             



由韦达定理代入上式,
化简整理得,即,故所求范围是.
……………………………………………8分
(ⅱ)依题意可知,直线MAMB的斜率存在,分别记为.
.      ………………………………10分



所以 , 故直线MAMB的倾斜角互补,
故直线MAMBx轴始终围成一个等腰三角形.…………………… 13分
点评:对于解决解析几何的方程问题,一般都是利用其性质得到a,b,c的关系式,然后求解得到,而对于直线与椭圆的位置关系,通常利用设而不求的数学思想,结合韦达定理,以及判别式来分析求解。尤其关注图形的特点与斜率和向量之间的关系转换,属于难度题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若正三角形的一个顶点在原点,另两个顶点在抛物线上,则这个三角形的面积为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点A(,0)作椭圆的弦,弦中点的轨迹仍是椭圆,记为,若的离心率分别为,则的关系是(     )。
A.B.=2
C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆的中心在坐标原点0,顶点分别是A1, A2, B1, B2,焦点分别为F1 ,F2,延长B1F2 与A2B2交于P点,若为钝角,则此椭圆的离心率的取值范围为
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知直线L:y=x+1与曲线C:交于不同的两点A,B;O为坐标原点。
(1)若,试探究在曲线C上仅存在几个点到直线L的距离恰为?并说明理由;
(2)若,且a>b,,试求曲线C的离心率e的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知,O为坐标原点,动点E满足:

(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线:的焦点为,是抛物线上异于坐标原点的不同两点,抛物线在点处的切线分别为,且相交于点.

(1) 求点的纵坐标; 
(2) 证明:三点共线;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案