精英家教网 > 高中数学 > 题目详情
已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求的值.
(Ⅰ);Ⅱ)

试题分析:(1)由题意得解得.所以椭圆C的方程为.
(5分)
(2)由.(7分)
设点M,N的坐标分别为,则.(9分)
所以|MN|===.
由因为点A(2,0)到直线的距离,(10分)
所以△AMN的面积为. 由,解得.(12分)
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程 表示焦点在y轴上的双曲线,则k的取值范围是(   )
A.3<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足

(1) 求实数ab间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是以为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
(i)求实数a,b,k满足的等量关系;
(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作直线交椭圆于两点,若存在直线使坐标原点恰好在以为直径的圆上,则椭圆的离心率取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的左焦点重合,则实数=    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点在曲线上,点在曲线上,则的最小值等于    

查看答案和解析>>

同步练习册答案