精英家教网 > 高中数学 > 题目详情
已知抛物线:的焦点为,是抛物线上异于坐标原点的不同两点,抛物线在点处的切线分别为,且相交于点.

(1) 求点的纵坐标; 
(2) 证明:三点共线;
(1) -1;(2)只需证

试题分析:(1)设点的坐标分别为
分别是抛物线在点处的切线,
∴直线的斜率,直线的斜率.            
, ∴ , 得.  ①       3分
是抛物线上的点,

∴ 直线的方程为,直线的方程为.
 解得
∴点的纵坐标为.        6分
(2) 证法1:∵ 为抛物线的焦点, ∴ .
∴ 直线的斜率为
直线的斜率为.
       9分
.
三点共线.    13分
证法2:∵ 为抛物线的焦点, 
. ∴
.
,      9分
.
三点共线.    13分

点评:向量法证明三点共线的常用方法:
(1)若
(2)若,则A、B、C三点共线。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足

(1) 求实数ab间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是以为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作直线交椭圆于两点,若存在直线使坐标原点恰好在以为直径的圆上,则椭圆的离心率取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线到抛物线的准线距离为d1,到直线的距离为d2,则d1+d2的最小值是          

查看答案和解析>>

同步练习册答案