精英家教网 > 高中数学 > 题目详情

【题目】已知2x≤256,且log2x≥
(1)求x的取值范围;
(2)求函数f(x)=log2 )log2 )的最大值和最小值.

【答案】
(1)解:由2x≤256,解得:x≤8,

由log2x≥ ,得:x≥

≤x≤8


(2)解:由(1) ≤x≤8得: ≤log2x≤3,

f(x)=( ﹣1)( ﹣2)=

= ,∴x= 时:f(x)min=﹣

=3,∴x=8时:f(x)max=2


【解析】(1)分别解不等式2x≤256,log2x≥ ,从而求出x的范围;(2)先整理出f(x)的表达式,结合二次函数的性质,求出函数的最值即可.
【考点精析】本题主要考查了对数的运算性质的相关知识点,需要掌握①加法:②减法:③数乘:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3.定义在R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},则A中所有元素之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)将分别2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.

(1)完成下面的列联表,并判断是否有的把握认为男生与女生对两会的关注有差异?

比较关注

不太关注

合计

男生

女生

合计

(2)该校学生会从对两会比较关注的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2参与两会宣传活动,求这2人全是男生的概率.

附:,.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取30件产品,测量这些产品的某项技术指标值,得到如下的频数分布表:

频数

2

6

18

4

(I)估计该技术指标值的平均数;(用各组区间中点值作代表)

(II) ,则该产品不合格,其余的是合格产品,试估计该条生产线生产的产品为合格品的概率;

(III)生产一件产品,若是合格品可盈利80元,不合格品则亏损10元,在(II)的前提下,从该生产线生产的产品中任取出两件,记为两件产品的总利润,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是偶函数,定义x≥0时,f(x)=
(1)求f(﹣2);
(2)当x<﹣3时,求f(x)的解析式;
(3)设函数y=f(x)在区间[﹣5,5]上的最大值为g(a),试求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线过定点,且倾斜角为,以坐标原点为极点,轴的正半轴为极值的坐标系中,曲线的极坐标方程为

(1)求曲线的的直角坐标方程与直线的参数方程;

(2)若直线与曲线相交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)万件与年促销费用)万元满足为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).

(1)求常数,并将该厂家2016年该产品的利润万元表示为年促销费用万元的函数;

(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

同步练习册答案