精英家教网 > 高中数学 > 题目详情
9.设集合A={x||x-a|<1,x∈R},B={y|y=lg(x2+1),x∈R},若A⊆B,则实数a的取值范围是(  )
A.{a|a>1}B.{a|a≥1}C.{a|a≥-1}D.{a|a>-1}

分析 化简集合A,B,利用A⊆B,即可求出实数a的取值范围.

解答 解:A={x||x-a|<1,x∈R}={x|a-1<x<a+1},B={y|y=lg(x2+1),x∈R}=[0,+∞),
∵A⊆B,
∴a-1≥0,
∴a≥1.
故选:B.

点评 本题考查集合的关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A-{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为(  )
A.792B.693C.594D.495

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+{x}^{2}-2,x≥0}\\{lo{g}_{2}(-x)+|x|,x<0}\end{array}\right.$的零点的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=m-$\frac{2}{{e}^{x}+1}$(e≈2.718)在R上是奇函数.
(1)求实数m的值,判断f(x)单调性,并用定义法证明;
(2)求满足不等式f(x)>$\frac{e-1}{e+1}$的x的集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=|2x-x2|+lnx的单调增区间是(0,$\frac{1+\sqrt{3}}{2}$]和(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm和30cm,且其侧面积等于两底面面积之和,求棱台的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知中心在原点,焦点在坐标轴上的双曲线的两条渐近线的夹角为$\frac{π}{3}$,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{2\sqrt{3}}{3}$或2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若b=2,c=6,∠A=$\frac{π}{4}$,则S△ABC=(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>1,则$\sqrt{(1-x)^{2}}$=x-1.

查看答案和解析>>

同步练习册答案