精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)|xm||2x1|.

(1)m=-1时,求不等式f(x)≤2的解集;

(2)f(x)≤|2x1|的解集包含,求m的取值范围.

【答案】(1)(2).

【解析】

1)零点分段法分类讨论解绝对值不等式即可.

2)由题意可知f(x)≤|2x1|上恒成立,可去掉绝对值|xm|≤2,解绝对值不等式,结合不等式的解集即可求解.

(1)m=-1时,f(x)|x1||2x1|

x≥1时,f(x)3x2≤2,所以1≤x

<x<1时,f(x)x≤2,所以<x<1

x时,f(x)23x≤2,所以0≤x

综上可得原不等式f(x)≤2的解集为.

(2)由题意可知f(x)≤|2x1|上恒成立,

x时,f(x)|xm||2x1||xm|2x1≤|2x1|2x1,所以|xm|≤2

即-2≤xm≤2,则-2xm≤2x,且(2x)max=-(2x)min0

因此m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxex2x0.

1)求函数yfx)的图象在点x2处的切线方程;

2)求证:fx)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记不等式组 ,表示的平面区域为 .下面给出的四个命题: 其中真命题的是:

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求a

(2)证明:存在唯一的极大值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数处的切线方程;

2)若上恒成立,求实数的取值范围;

3)当时,求函数的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.

1)求证:平面平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,的中点.

1)平面平面

2)在线段上是否存在点,使二面角的大小为?若存在,求出的长度;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案