精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2-ax+1,存在?∈(
π
4
π
2
)
,使得f(sin?)=f(cos?),则实数a的取值范围是
(2,2
2
)
(2,2
2
)
分析:利用条件化简可得2(sinφ+cosφ)=a,利用辅助角公式及角的范围,即可求实数a的取值范围.
解答:解:根据题意:2sin2φ-asinφ+1=2cos2φ-acosφ+1,即:2(sin2φ-cos2φ)=a(sinφ-cosφ)
即:2(sinφ+cosφ)(sinφ-cosφ)=a(sinφ-cosφ),
因为:φ∈(
π
4
π
2
),所以sinφ-cosφ≠0
故:2(sinφ+cosφ)=a,即:a=2
2
sin(φ+
π
4

由φ∈(
π
4
π
2
)得:φ+
π
4
∈(π/2,3π/4),也就是:sin(φ+
π
4
)∈(
2
2
,1)
所以:a=2
2
sin(φ+
π
4
)∈(2,2
2

故答案为:(2,2
2
)
点评:本题考查三角函数的化简,考查函数与方程的综合运用,考查辅助角公式的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案