精英家教网 > 高中数学 > 题目详情
20.在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.
(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;
(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.

分析 (1)出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;
(2)确定满足0≤x≤1,0≤y≤1点的区域,由条件$\left\{\begin{array}{l}{2x-y-1≤0}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.

解答 解:(1)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,
∴a和b至少有一人上台抽奖的概率为$\frac{9}{15}$=$\frac{3}{5}$;
(2)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,

由条件$\left\{\begin{array}{l}{2x-y-1≤0}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,得到的区域为图中的阴影部分
由2x-y-1=0,令y=0可得x=$\frac{1}{2}$,令y=1可得x=1
∴在x,y∈[0,1]时满足2x-y-1≤0的区域的面积为S=$\frac{1}{2}×(1+\frac{1}{2})×1$=$\frac{3}{4}$
∴该代表中奖的概率为$\frac{\frac{3}{4}}{1}$=$\frac{3}{4}$.

点评 本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知命题p:$\frac{x-1}{x+1}$≤0,命题q:(x-m)(x-m+3)≥0,m∈R,若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}-{x^2}+4x+2\;\;x≤0\\{x^2}+2x+2\;\;\;\;x>0\end{array}\right.$,若不等式f(x+a)>f(2a-x)在[a-1,a]上恒成立,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题P:“如果a+b>0,那么a>0且b>0.”写出命题P的否命题:“如果a+b≤0,那么a≤0或b≤0.”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了在运行右面的程序之后输出y=2,输入的x可以是(  ) 
A.0B.2C.0或2D.-1,0或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S10=$\int_0^1{(\sqrt{1-{x^2}}}+2x-\frac{π}{4})dx$,则a5+a6=(  )
A.$\frac{12}{5}$B.12C.6D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB=$\frac{1}{2}$,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求平面AMC与平面BMC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为(0,+∞)、值域为R的函数f(x),对于任意x,y∈(0,+∞)总有f(xy)=f(x)+f(y).当x>1时,恒有f(x)>0.
(1)求证:f(x)必有反函数;
(2)设f(x)的反函数是f-1(x),若不等式f-1(-4x+k•2x-1)<1对任意的实数x恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O为坐标原点,F是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点,A、B分别为椭圆C的左、右顶点,P为椭圆C上一点,且PF⊥x轴.过顶点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案