精英家教网 > 高中数学 > 题目详情
10.已知O为坐标原点,F是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点,A、B分别为椭圆C的左、右顶点,P为椭圆C上一点,且PF⊥x轴.过顶点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=-c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.

解答 解:由题意可设F(-c,0),A(-a,0),B(a,0),
令x=-c,代入椭圆方程可得y=±$\frac{{b}^{2}}{a}$,可得P(-c,±$\frac{{b}^{2}}{a}$).
设直线AE的方程为y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
设OE的中点为H,可得H(0,$\frac{ka}{2}$),由B,H,M三点共线,可得kBH=kBM,即$\frac{a-c}{a+c}=\frac{1}{2}$,即为a=3c,
可得e=$\frac{c}{a}=\frac{1}{3}$.
故选:A.

点评 本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.
(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;
(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{7}}{4}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{5}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员应该各抽取人数为(  )
A.8,15,7B.16,2,2C.16,3,1D.12,5,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的前n项和${S_n}={n^2}-7n+3$,则有(  )
A.S3最小B.S4最小C.S7最小D.S3,S4最小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校举办安全法规知识竞赛,从参赛的高一学生中抽出100人的成绩作为样本进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图).
(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[-$\frac{π}{4}$,$\frac{2π}{3}$]上任取一个数x,则函数f(x)=3sin(2x-$\frac{π}{6}$)的值不小于0的概率为(  )
A.$\frac{8}{11}$B.$\frac{3}{11}$C.$\frac{6}{11}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知长方体ABCD-A1B1C1D1中,AD=AB=2,AA1=1,E为C1D1的中点.
(1)在所给图中画出平面ABD1与平面B1CE的交线(不必说明理由)
(2)证明:BD1∥平面B1CE;
(3)求点C1到平面B1CE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b是两条直线α,β是两个平面,则“a?α,b⊥β,α∥β”是“a⊥b”的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案