精英家教网 > 高中数学 > 题目详情
6.直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为(  )
A.2x+3y-12=0B.2x+3y+12=0C.2x-3y+12=0D.2x-3y-12=0

分析 由直线ax+y+3a-1=0可得定点坐标,设直线2x+3y-6=0关于M点对称的直线方程为2x+3y+c=0,则$\frac{|-6+3-6|}{\sqrt{4+9}}=\frac{|-6+3+c|}{\sqrt{4+9}}$,求出c,即可得出结论.

解答 解:由直线ax+y+3a-1=0,可得a(x+3)+(y-1)=0
令$\left\{\begin{array}{l}{x+3=0}\\{y-1=0}\end{array}\right.$,可得x=-3,y=1,
∴M(-3,1),
设直线2x+3y-6=0关于M点对称的直线方程为2x+3y+c=0,则$\frac{|-6+3-6|}{\sqrt{4+9}}=\frac{|-6+3+c|}{\sqrt{4+9}}$,
∴c=12或c=-6(舍去)
故选B.

点评 本题考查直线恒过定点,考查对称性的运用,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=sin(x+φ)在x=$\frac{π}{4}$时取得最小值,则函数y=f($\frac{3π}{4}$-x)的一个单调递增区间是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=x5+ax3+bx-8且f(-2)=3,那么f(2)等于-19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F为抛物线x2=-4y的焦点,该抛物线在点P(-4,-4)处的切线与x轴的交点为Q,则三角形PFQ的外接圆方程为(x+2)2+(y+$\frac{5}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD,PA=AB,E为PD中点.
(1)求证:直线PD⊥平面AEB;
(2)若直线PC交平面AEB于点F,求直线BF与平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为(  )
A.2+2$\sqrt{3}$+$\sqrt{6}$B.4+2$\sqrt{3}$+$\sqrt{6}$C.4+4$\sqrt{3}$+$\sqrt{6}$D.2+$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t是参数)和$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的正半轴为极轴建立坐标系.
(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)射线OM:θ=α(α∈[$\frac{π}{6}$,$\frac{π}{4}$])与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-3x2+1的单调递减区间是(  )
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表则当m取下面何值时,X与Y的关系最弱?(  )
 y1y2
x11018
x2m26
A.8B.9C.14D.19

查看答案和解析>>

同步练习册答案