精英家教网 > 高中数学 > 题目详情
11.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为(  )
A.2+2$\sqrt{3}$+$\sqrt{6}$B.4+2$\sqrt{3}$+$\sqrt{6}$C.4+4$\sqrt{3}$+$\sqrt{6}$D.2+$\sqrt{3}$+$\sqrt{6}$

分析 由三视图可知:该几何体为三棱锥P-ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.进而得出.

解答 解:由三视图可知:该几何体为三棱锥P-ABC,
其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.
该几何体的表面积S=$\frac{1}{2}×1×2$×2+$\frac{\sqrt{3}}{4}×(2\sqrt{2})^{2}$+$\frac{1}{2}×2\sqrt{2}×\sqrt{3}$
=2+2$\sqrt{3}$+$\sqrt{6}$.
故选:A.

点评 本题考查了三棱锥是三视图、三角形面积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是等差数列,其前n项和为Sn,a3+a9=24,S5=30.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}•{a_{n+2}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=(x+1)e-x(e为自然对数的底数)的单调减区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${(1+\frac{1}{2}x)}^{5}$的展开式中的第三项的系数为(  )
A.5B.$\frac{5}{2}$C.$\frac{5}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为(  )
A.2x+3y-12=0B.2x+3y+12=0C.2x-3y+12=0D.2x-3y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某中学高二年级开设五门大学选修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理、商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:
选修课程线性代数微积分大学物理商务英语文学写作合计
选课人数180x120y60600
其中选修数学学科的人数所占频率为0.6.为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(Ⅰ)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式g(x)<|x-2|+2;
(2)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}通项公式为an=$\frac{1}{n(n+1)}$,其前m项和为$\frac{9}{10}$,则双曲线$\frac{x^2}{m+1}-\frac{y^2}{m}$=1的渐近线方程是(  )
A.y=±$\frac{9}{10}$xB.y=±$\frac{10}{9}$xC.y=±$\frac{{3\sqrt{10}}}{10}$xD.y=±$\frac{{\sqrt{10}}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=x3-ax-1.
(1)当a=8时,求函数f(x)在x=0处的切线方程.
(2)讨论f(x)=x3-ax-1的单调性.

查看答案和解析>>

同步练习册答案