精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式g(x)<|x-2|+2;
(2)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

分析 (1)问题转化为|x-1|<|x-2|,然后求解不等式即可.
(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可

解答 解:(1)由g(x)<|x-2|+2,得:|x-1|<|x-2|,
两边平方得:x2-2x+1<x2-4x+4,
解得:x<$\frac{3}{2}$,
故不等式的解集是{x|x<$\frac{3}{2}$};
(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
所以{y|y=f(x)}⊆{y|y=g(x)},
又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,
g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,
所以实数a的取值范围为a≥-1或a≤-5.

点评 本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,且该几何体的体积是$\sqrt{3}$cm3,则正视图中的x值是2cm,该几何体的表面积是$\frac{{5\sqrt{3}+3\sqrt{7}+4}}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F为抛物线x2=-4y的焦点,该抛物线在点P(-4,-4)处的切线与x轴的交点为Q,则三角形PFQ的外接圆方程为(x+2)2+(y+$\frac{5}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为(  )
A.2+2$\sqrt{3}$+$\sqrt{6}$B.4+2$\sqrt{3}$+$\sqrt{6}$C.4+4$\sqrt{3}$+$\sqrt{6}$D.2+$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t是参数)和$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的正半轴为极轴建立坐标系.
(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)射线OM:θ=α(α∈[$\frac{π}{6}$,$\frac{π}{4}$])与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y+9=0和椭圆C:$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(1)求椭圆C的两焦点F1,F2的坐标;
(2)求以F1,F2为焦点且与直线l有公共点M的椭圆中长轴最短的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-3x2+1的单调递减区间是(  )
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)(1-i)(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(1+i).
(2)$\frac{2+2i}{(1-i)^{2}}$+($\frac{\sqrt{2}}{1+i}$)2010

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sinx-2x的导数是(  )
A.cosx-2xB.cosx-2x•ln2C.-cosx+2xD.-cosx-2x•ln2

查看答案和解析>>

同步练习册答案