精英家教网 > 高中数学 > 题目详情
8.函数y=sinx-2x的导数是(  )
A.cosx-2xB.cosx-2x•ln2C.-cosx+2xD.-cosx-2x•ln2

分析 利用导数的运算法则即可得出.

解答 解:∵y=sinx-2x
∴y′=cosx-2x•ln2
故选:B.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式g(x)<|x-2|+2;
(2)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α为第二象限角,则$\frac{α}{2}$所在的象限是(  )
A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=x3-ax-1.
(1)当a=8时,求函数f(x)在x=0处的切线方程.
(2)讨论f(x)=x3-ax-1的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知圆O:x2+y2=4和点P(-1,0),过点P的直线l交圆O于A、B两点
(1)若|AB|=2$\sqrt{3}$,求直线l的方程;
(2)设弦AB的中点为M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点F2的直线l与椭圆C相交于A、B两点,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=2,点(an,an+1)在直线y=3x+2上,数列{bn}满足b1=2,$\frac{{b}_{n+1}}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
(1)求b2的值;
(2)求证数列{an+1}为等比数列,并求出数列{an}的通项公式;
(3)求证:2-$\frac{1}{2•{3}^{n-1}}$≤(1+$\frac{1}{{b}_{1}}$)(1+$\frac{1}{{b}_{2}}$)…(1+$\frac{1}{{b}_{n}}$)<$\frac{33}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用与球心距离为1的平面去截球所得的截面面积为π,则球的表面积为(  )
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.北京时间3月15日下午,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行最后一轮较量,AlphaGo获得本场比赛胜利,最终人机大战总比分定格在1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
非围棋迷围棋迷合计
301545
451055
合计7525100
(1)根据已知条件完成如图列联表,并据此资料判断你是否有95%的把握认为“围棋迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(x2≥k00.050.010
k03.746.63

查看答案和解析>>

同步练习册答案