分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法即可得出.
解答 解:(1)因为数列{an}是等差数列,设其首项是a1,公差是d,由题意a3+a9=2a6=24,a6=12,${S_5}=\frac{{5({a_1}+{a_5})}}{2}=30,{a_1}+{a_5}=2{a_3}=12,{a_3}=6$,
解得a1=2,d=2,an=2n.…(5分)
(2)因为an=2n,an+2=2(n+2),
$\frac{1}{{{a_n}•{a_{n+2}}}}=\frac{1}{2n•2(n+2)}=\frac{1}{8}•(\frac{1}{n}-\frac{1}{n+2})$,
∴$\begin{array}{l}{T_n}=\frac{1}{8}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})\\=\frac{1}{8}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})\end{array}$
=$\frac{n(3n+5)}{16(n+1)(n+2)}$…(12分)
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∧q | B. | p∧q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | B. | (0,$\frac{π}{2}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+2$\sqrt{3}$+$\sqrt{6}$ | B. | 4+2$\sqrt{3}$+$\sqrt{6}$ | C. | 4+4$\sqrt{3}$+$\sqrt{6}$ | D. | 2+$\sqrt{3}$+$\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com