精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,其前n项和为Sn,a3+a9=24,S5=30.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}•{a_{n+2}}}}}\right\}$的前n项和Tn

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法即可得出.

解答 解:(1)因为数列{an}是等差数列,设其首项是a1,公差是d,由题意a3+a9=2a6=24,a6=12,${S_5}=\frac{{5({a_1}+{a_5})}}{2}=30,{a_1}+{a_5}=2{a_3}=12,{a_3}=6$,
解得a1=2,d=2,an=2n.…(5分)
(2)因为an=2n,an+2=2(n+2),
$\frac{1}{{{a_n}•{a_{n+2}}}}=\frac{1}{2n•2(n+2)}=\frac{1}{8}•(\frac{1}{n}-\frac{1}{n+2})$,
∴$\begin{array}{l}{T_n}=\frac{1}{8}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})\\=\frac{1}{8}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})\end{array}$
=$\frac{n(3n+5)}{16(n+1)(n+2)}$…(12分)

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知命题p:“?x∈(0,+∞),lnx+4x≥3”;命题q:“?x0∈(0,+∞),8x0+$\frac{1}{2{x}_{0}}$≤4”.则下列命题为真命题的是(  )
A.(¬p)∧qB.p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1为圆(x+1)2+y2=16的圆心,N为圆F1上一动点,且F2(1,0),点M,P分别是线段F1N,F2N上的点,满足$\overrightarrow{MP}$•$\overrightarrow{{F}_{2}N}$=0,$\overrightarrow{{F}_{2}N}$=2$\overrightarrow{{F}_{2}P}$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)过点F2的直线l(与x轴不重合)与轨迹E交于A,C两点,线段AC的中点为G,连接OG并延长交轨迹E于B点(O为坐标原点),求四边形OABC的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过右焦点F且垂直于x轴的直线与椭圆E交于M,N两点,且|MN|=3.
(Ⅰ)求椭圆E的方程;
(Ⅱ)A,B,C为椭圆E上不同的三点,O为坐标原点,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,试问:△ABC的面积是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=sin(x+φ)在x=$\frac{π}{4}$时取得最小值,则函数y=f($\frac{3π}{4}$-x)的一个单调递增区间是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=loga(1+x)-loga(1-x)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并予以证明;
(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,且该几何体的体积是$\sqrt{3}$cm3,则正视图中的x值是2cm,该几何体的表面积是$\frac{{5\sqrt{3}+3\sqrt{7}+4}}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2$\sqrt{2}$,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知A,B为椭圆的左右两个顶点,T为椭圆上在第一象限内的一点,l为过点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M以SB为直径的圆与直线TB的另一个交点,求证:O,M,S三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为(  )
A.2+2$\sqrt{3}$+$\sqrt{6}$B.4+2$\sqrt{3}$+$\sqrt{6}$C.4+4$\sqrt{3}$+$\sqrt{6}$D.2+$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

同步练习册答案