10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÒÑÖªA£¬BΪÍÖÔ²µÄ×óÓÒÁ½¸ö¶¥µã£¬TΪÍÖÔ²ÉÏÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬lΪ¹ýµãBÇÒ´¹Ö±xÖáµÄÖ±Ïߣ¬µãSΪֱÏßATÓëÖ±ÏßlµÄ½»µã£¬µãMÒÔSBΪֱ¾¶µÄÔ²ÓëÖ±ÏßTBµÄÁíÒ»¸ö½»µã£¬ÇóÖ¤£ºO£¬M£¬SÈýµã¹²Ïߣ®

·ÖÎö £¨¢ñ£©ÓÉa¼°ÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃcÖµ£¬Ôòb2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßATµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíÇóµÃTµã×ø±ê£¬ÓÉBT¡ÍSM£¬Ôò$\overrightarrow{SO}$=£¨-$\sqrt{2}$£¬-2$\sqrt{2}$k£©£¬Ôò$\overrightarrow{SO}$•$\overrightarrow{BT}$=$\frac{8{k}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0£¬BT¡ÍSO£¬¼´¿ÉO£¬M£¬SÈýµã¹²Ïߣ®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£ºa=$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòc=1£¬
ÓÖb2=a2-c2=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»     ¡­£¨4·Ö£©
£¨¢ò£©ÉèÖ±ÏßAT·½³ÌΪ£ºy=k£¨x+$\sqrt{2}$£©£¬£¨k£¾0£©£¬ÉèµãT×ø±êΪ£¨x1£¬y1£©£¬
$\left\{\begin{array}{l}{y=k£¨x+\sqrt{2}£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬Ôò£¨1+2k2£©x2+4$\sqrt{2}$k2x+4k2-1=0£¬¡­£¨5·Ö£©
ÓÉΤ´ï¶¨Àíx1x2=$\frac{4{k}^{2}-2}{1+2{k}^{2}}$£¬ÓÖAµã×ø±êΪ£¨-$\sqrt{2}$£¬0£©£¬
µÃx1=$\frac{\sqrt{2}-2\sqrt{2}{k}^{2}}{1+2{k}^{2}}$£¬y1=$\frac{2\sqrt{2}k}{1+2{k}^{2}}$£¬¡­£¨7·Ö£©
ÓÖBµã×ø±êΪ£¨$\sqrt{2}$£¬0£©£¬Ôò$\overrightarrow{BT}$=£¨-$\frac{4\sqrt{2}{k}^{2}}{1+2{k}^{2}}$£¬$\frac{2\sqrt{2}k}{1+2{k}^{2}}$£©£¬¡­£¨8·Ö£©
ÓÉÔ²µÄÐÔÖʵãºBT¡ÍSM£¬
ËùÒÔ£¬ÒªÖ¤Ã÷O£¬M£¬SÈýµã¹²£¬Ö»ÒªÖ¤Ã÷BT¡ÍSO¼´¿É£¬¡­£¨9·Ö£©
ÓÖSµãºá×ø±êΪ$\sqrt{2}$£¬ÔòSµã×ø±êΪ£¨$\sqrt{2}$£¬2$\sqrt{2}$k£©£¬$\overrightarrow{SO}$=£¨-$\sqrt{2}$£¬-2$\sqrt{2}$k£©£¬
$\overrightarrow{SO}$•$\overrightarrow{BT}$=$\frac{8{k}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0£¬¡­£¨11·Ö£©
¼´BT¡ÍSO£¬ÓÖBT¡ÍSM£¬
¡àO£¬M£¬SÈýµã¹²Ïߣ®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¹ýÔ²x2+y2=1ÉÏÈÎÒâÒ»µãP×÷xÖáµÄ´¹ÏßPN£¬´¹×ãΪN£¬ÔòÏß¶ÎPNµÄÖеãMµÄ¹ì¼£·½³ÌΪx2+4y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäǰnÏîºÍΪSn£¬a3+a9=24£¬S5=30£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ$\left\{{\frac{1}{{{a_n}•{a_{n+2}}}}}\right\}$µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôÔ²x2+y2-6x-4y-5=0ÉÏÖÁÉÙÓÐÈý¸ö²»Í¬µÄµãµ½Ö±Ïß?£ºax+by-a=0µÄ¾àÀëΪ2$\sqrt{2}$£¬ÔòÖ±Ïß?Çãб½ÇµÄȡֵ·¶Î§ÊÇ£º£¨¡¡¡¡£©
A£®$[{\frac{¦Ð}{12}£¬\frac{¦Ð}{4}}]$B£®$[{\frac{¦Ð}{12}£¬\frac{5¦Ð}{12}}]$C£®$[{\frac{¦Ð}{6}£¬\frac{¦Ð}{3}}]$D£®$[{0£¬\frac{¦Ð}{2}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬PΪÕý·½ÐÎA1B1C1D1ËıßÉϵ͝µã£¬OΪµ×ÃæÕý·½ÐÎABCDµÄÖÐÐÄ£¬M£¬N·Ö±ðΪAB£¬BCµÄÖе㣬µãQÎªÆ½ÃæABCDÄÚÒ»µã£¬Ïß¶ÎD1QÓëOP»¥ÏàÆ½·Ö£¬ÔòÂú×ã$\overrightarrow{MQ}$=¦Ë$\overrightarrow{MN}$µÄʵÊý¦ËÓÐ2¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Éè¦ÈÊÇÈý½ÇÐεÄÒ»¸öÄڽǣ¬$\overrightarrow m=£¨{sin¦È£¬cos¦È}£©£¬\overrightarrow n=£¨{1£¬1}£©$ÇÒ$\overrightarrow m•\overrightarrow n=\frac{1}{3}$£¬Ôò·½³Ìx2sin¦È-y2cos¦È=1±íʾµÄÇúÏßÊǽ¹µãÔÚyÖáÉϵÄÍÖÔ²£¨ÌîÅ×ÎïÏß¡¢ÍÖÔ²¡¢Ë«ÇúÏßµÄÒ»ÖÖ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýf£¨x£©=£¨x+1£©e-x£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©µÄµ¥µ÷¼õÇø¼äΪ£¨0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®${£¨1+\frac{1}{2}x£©}^{5}$µÄÕ¹¿ªÊ½ÖеĵÚÈýÏîµÄϵÊýΪ£¨¡¡¡¡£©
A£®5B£®$\frac{5}{2}$C£®$\frac{5}{4}$D£®$\frac{5}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÊýÁÐ{an}ͨÏʽΪan=$\frac{1}{n£¨n+1£©}$£¬ÆäǰmÏîºÍΪ$\frac{9}{10}$£¬ÔòË«ÇúÏß$\frac{x^2}{m+1}-\frac{y^2}{m}$=1µÄ½¥½üÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®y=¡À$\frac{9}{10}$xB£®y=¡À$\frac{10}{9}$xC£®y=¡À$\frac{{3\sqrt{10}}}{10}$xD£®y=¡À$\frac{{\sqrt{10}}}{3}$x

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸