精英家教网 > 高中数学 > 题目详情
18.若圆x2+y2-6x-4y-5=0上至少有三个不同的点到直线?:ax+by-a=0的距离为2$\sqrt{2}$,则直线?倾斜角的取值范围是:(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{12},\frac{5π}{12}}]$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$[{0,\frac{π}{2}}]$

分析 由题意得到圆心C(3,2)到直线?:ax+by-a=0的距离小于$\sqrt{2}$,由此能求出倾斜角的范围.

解答 解:圆x2+y2-6x-4y-5=0的圆心C(3,2),r=$\frac{1}{2}\sqrt{36+16+20}=3\sqrt{2}$,
∵圆x2+y2-6x-4y-5=0上至少有三个不同的点到直线?:ax+by-a=0的距离为2$\sqrt{2}$,
∴圆心C(3,2)到直线?:ax+by-a=0的距离小于$\sqrt{2}$,
即$d=\frac{|3a+2b-a|}{\sqrt{{a}^{2}+{b}^{2}}}$$≤\sqrt{2}$,
b=0时,不符合,∴b≠0,
∴$d=\frac{|3a+2b-a|}{\sqrt{{a}^{2}+{b}^{2}}}$=|$\frac{\frac{2a}{b}+2}{\sqrt{\frac{{a}^{2}}{{b}^{2}}+1}}$|$≤\sqrt{2}$,
∴($\frac{a}{b}$)2+4•$\frac{a}{b}$+1≤0.∴-2-$\sqrt{3}$≤$\frac{a}{b}$≤-2+$\sqrt{3}$.即2-$\sqrt{3}$≤k≤2+$\sqrt{3}$,
∴倾斜角的范围为[$\frac{π}{12}$,$\frac{5π}{12}$].
故选:B.

点评 本题考查直线的倾斜角的取值范围的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.圆O1:x2+y2-2x=0和圆O2:x2+y2-4x=0的公切线条数(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过右焦点F且垂直于x轴的直线与椭圆E交于M,N两点,且|MN|=3.
(Ⅰ)求椭圆E的方程;
(Ⅱ)A,B,C为椭圆E上不同的三点,O为坐标原点,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,试问:△ABC的面积是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=loga(1+x)-loga(1-x)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并予以证明;
(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,且该几何体的体积是$\sqrt{3}$cm3,则正视图中的x值是2cm,该几何体的表面积是$\frac{{5\sqrt{3}+3\sqrt{7}+4}}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{3}$,左、右顶点分别是A1,A2,上、下顶点分别为B1,B2,且$\overrightarrow{{A_1}{B_1}}•\overrightarrow{{A_2}{B_2}}=-1$.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x0,y0),是(2)中轨迹C2上不同的点,且AB⊥BC,求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2$\sqrt{2}$,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知A,B为椭圆的左右两个顶点,T为椭圆上在第一象限内的一点,l为过点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M以SB为直径的圆与直线TB的另一个交点,求证:O,M,S三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正六边形ABCDEF的对角线AC和CE分别被内点M和N分割,且有$\frac{AM}{AC}=\frac{CN}{CE}=r$.如果B、M、N共线,则r的值为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y+9=0和椭圆C:$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(1)求椭圆C的两焦点F1,F2的坐标;
(2)求以F1,F2为焦点且与直线l有公共点M的椭圆中长轴最短的椭圆的方程.

查看答案和解析>>

同步练习册答案