精英家教网 > 高中数学 > 题目详情
8.圆O1:x2+y2-2x=0和圆O2:x2+y2-4x=0的公切线条数(  )
A.1条B.2条C.3条D.4条

分析 判断两个圆的位置关系,然后判断公切线条数.

解答 解:圆O1:x2+y2-2x=0的圆心(1,0)半径为1;圆O2:x2+y2-4x=0的圆心(2,0),半径为2,
O1O2=1=2-1,∴两个圆内切,
所以圆O1:x2+y2-2x=0和圆O2:x2+y2-4x=0的公切线条数:1.
故选:A.

点评 本题考查两个圆的位置关系,两个圆相离公切线4条,相交2条,外切3条,内切1条.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上,且PF=2FD.
(1)求证:BE∥平面ACF;
(2)设异面直线$\overrightarrow{BE}$与$\overrightarrow{CF}$的夹角为θ,若$cosθ=\frac{5}{11}$,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于复数Z=$\frac{2}{-1+i}$的四个命题:
p1:|Z|=2
p2:Z2=2i
p3:Z的共轭复数为1+i
p4:Z的虚部为-1.
其中的真命题为(  )
A.p2,p3B.p1,p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=kx-$\frac{k}{x}$-2lnx.
(1)若f(x)在其定义域内为单调增函数,求k的取值范围;
(2)求f(x)的单调区间及存在极值的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)是偶函数,y=g(x)的奇函数,它们的定义域为[-π,π],且它们在x∈[0,π]上的图象如图所示,则不等式$\frac{f(x)}{g(x)}>0$的解集为$(-π,-\frac{π}{3})∪(0,\frac{π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:函数f(x)=lg[(a2-1)x2+(a+1)x+1]的值域为R;命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=ax-2的图象恰有两个交点;如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过圆x2+y2=1上任意一点P作x轴的垂线PN,垂足为N,则线段PN的中点M的轨迹方程为x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为3x±4y=0,右焦点为(5,0),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若圆x2+y2-6x-4y-5=0上至少有三个不同的点到直线?:ax+by-a=0的距离为2$\sqrt{2}$,则直线?倾斜角的取值范围是:(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{12},\frac{5π}{12}}]$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$[{0,\frac{π}{2}}]$

查看答案和解析>>

同步练习册答案