精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{x^3}{3}-{x^2}$-2ax(a∈R),若f′(1)=-1,求y=f(x)的单调区间.

分析 求出函数的导数,计算f′(1)的值,解关于导数的不等式求出函数的单调区间.

解答 解:f'(x)=x2-2x-2a,
由f'(1)=-1-2a=-1,得a=0,
令f'(x)=x2-2x>0,
得x<0或x>2,
令f'(x)=x2-2x<0,
得0<x<2,
所以函数y=f(x)的单调增区间为(-∞,0),(2,+∞),减区间为(0,2).

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.2016年,某厂计划生产某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=$\frac{x^2}{10}$-2x+90.
(1)当x=40时,求该产品每吨的生产成本;
(2)若该产品每吨的出厂价为6万元,求该厂2016年获得利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.当实数m为何值时,$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)•i$,
(1)为实数;  
(2)为虚数;   
(3)为纯虚数;  
(4)复数z对应的点在复平面内的第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过(1,1)的直线l与双曲线${x^2}-\frac{y^2}{3}=1$有且仅有一个公共点的直线有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线$y=cosx({0≤x≤\frac{3π}{2}})$与x轴所围图形的面积为(  )
A.4B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下面关于循环小数化成分数的等式:(注意:头上加点的数字)0.$\stackrel{•}{3}$=$\frac{3}{9}$=$\frac{1}{3}$,1.$\stackrel{•}{1}$$\stackrel{•}{8}$=$\frac{18}{99}$=$\frac{2}{11}$,0.$\stackrel{•}{3}$$\stackrel{•}{5}$$\stackrel{•}{2}$=$\frac{352}{999}$,0.000$\stackrel{•}{5}$$\stackrel{•}{9}$=$\frac{1}{1000}$×$\frac{59}{99}$=$\frac{59}{99000}$,据此推测循环小数0.2$\stackrel{•}{3}$可化成分数$\frac{7}{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙两人同时应聘一个工作岗位,若甲、乙被应聘的概率分别为0.5和0.6,两人被聘用是相互独立的,则甲、乙两人中最多有一人被聘用的概率为0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(x+1)a+1(a>0),则“a是奇数”是“x=-1是函数f(x)的一个极值点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案