精英家教网 > 高中数学 > 题目详情
9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

分析 分析已知中的数塔,可知,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,进而得到答案.

解答 解:由1×9+2=11;
12×9+3=111;
123×9+4=1111;
1234×9+5=11111;

归纳可得:等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,
∴123456×9+7=1111111,
故选:B.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知复数z 满足z(1-i)=1+i,那么z=i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知在△ABC中,AB=4,AC=6,BC=$\sqrt{7}$,其外接圆的圆心为O,则$\overrightarrow{AO}•\overrightarrow{AB}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一只蚂蚁在边长分别为2,$2\sqrt{3}$,4的三角形内爬行,某时刻此此蚂蚁距离顶点三角形的距离均不超过1的概率为(  )
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}π}}{6}$D.$1-\frac{{\sqrt{3}π}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{x^3}{3}-{x^2}$-2ax(a∈R),若f′(1)=-1,求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=(sinθ-2cosθ)+(sinθ+2cosθ)i是纯虚数,则sinθcosθ=(  )
A.-$\frac{5}{2}$B.-$\frac{2}{5}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=acosx+b(a>0)的最大值是3,最小值是-1.
(1)求实数a,b的值;
(2)求函数f(x)=bsin(ax+$\frac{π}{3}$)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,那么f(π)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知n∈N*,k∈N*,k≤n.求证:
(1)(k+1)C${\;}_{n+1}^{k+1}$=(n+1)C${\;}_{n}^{k}$;
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.

查看答案和解析>>

同步练习册答案