精英家教网 > 高中数学 > 题目详情
9.已知复数z 满足z(1-i)=1+i,那么z=i.

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z(1-i)=1+i,
∴$z=\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$,
故答案为:i.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.经过两条直线l1:2x-3y+10=0与l2:3x+4y-2=0的交点,且垂直于直线3x-2y+5=0的直线方程为(  )
A.3x+2y+2=0B.3x-2y+10=0C.2x+3y-2=0D.2x-3y+10=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{p}$=(mlnx+ln2e2,x),$\overrightarrow{q}$=(1,$\frac{x}{2}$-m-1),函数f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$(其中e=2.71828…是自然对数的底数).
(1)当m=-1时,求函数f(x)在点P(2,f(2))处的切线方程;
(2)讨论函数f(x)的极值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如图所示的流程图,则输出的结果an是(  )
A.-5B.-4C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2016年,某厂计划生产某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=$\frac{x^2}{10}$-2x+90.
(1)当x=40时,求该产品每吨的生产成本;
(2)若该产品每吨的出厂价为6万元,求该厂2016年获得利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:ax+(a+2)y+1=0,l2:ax-y+2=0.则“a=-3”是“l1∥l2”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在空间直角坐标系中,点P(-2,1,4)关于xOy平面对称的点P1的坐标是(-2,1,-4);点A(1,0,2)关于点P对称的点P2的坐标是(-5,2,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ-ρsinθ-25=0,曲线W:$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}-1}\end{array}\right.$(t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

同步练习册答案