精英家教网 > 高中数学 > 题目详情
20.已知在△ABC中,AB=4,AC=6,BC=$\sqrt{7}$,其外接圆的圆心为O,则$\overrightarrow{AO}•\overrightarrow{AB}$=8.

分析 由题意画出图形,把$\overrightarrow{AO}•\overrightarrow{AB}$展开,结合向量在向量方向上的投影得答案.

解答 解:如图,过O作OD⊥AB,垂足为D,则D为AB的中点,
∵AB=4,
∴$\overrightarrow{AO}•\overrightarrow{AB}$=$|\overrightarrow{AO}||\overrightarrow{AB}|cos∠OAB=|\overrightarrow{AD}||\overrightarrow{AB}|=\frac{1}{2}|\overrightarrow{AB}{|}^{2}$=$\frac{1}{2}×{4}^{2}=8$.
故答案为:8.

点评 本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{p}$=(mlnx+ln2e2,x),$\overrightarrow{q}$=(1,$\frac{x}{2}$-m-1),函数f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$(其中e=2.71828…是自然对数的底数).
(1)当m=-1时,求函数f(x)在点P(2,f(2))处的切线方程;
(2)讨论函数f(x)的极值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在空间直角坐标系中,点P(-2,1,4)关于xOy平面对称的点P1的坐标是(-2,1,-4);点A(1,0,2)关于点P对称的点P2的坐标是(-5,2,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ-ρsinθ-25=0,曲线W:$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}-1}\end{array}\right.$(t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.当实数m为何值时,$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)•i$,
(1)为实数;  
(2)为虚数;   
(3)为纯虚数;  
(4)复数z对应的点在复平面内的第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,写出终边落在阴影部分的角α的集合(含边界){α|k•360°≤α≤45°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过(1,1)的直线l与双曲线${x^2}-\frac{y^2}{3}=1$有且仅有一个公共点的直线有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定义域为(0,2).

查看答案和解析>>

同步练习册答案