精英家教网 > 高中数学 > 题目详情
14.复数z=(sinθ-2cosθ)+(sinθ+2cosθ)i是纯虚数,则sinθcosθ=(  )
A.-$\frac{5}{2}$B.-$\frac{2}{5}$C.$\frac{2}{5}$D.$\frac{5}{2}$

分析 由复数z的实部为0且虚部不为0求得tanθ,再把sinθcosθ转化为含有tanθ的代数式得答案.

解答 解:∵复数z=(sinθ-2cosθ)+(sinθ+2cosθ)i是纯虚数,
∴$\left\{\begin{array}{l}{sinθ-2cosθ=0}\\{sinθ+2cosθ≠0}\end{array}\right.$,解得tanθ=2.
则sinθcosθ=$\frac{sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}=\frac{tanθ}{ta{n}^{2}θ+1}=\frac{2}{{2}^{2}+1}=\frac{2}{5}$.
故选:C.

点评 本题考查复数的基本概念,考查了三角函数的化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知直线l1:ax+(a+2)y+1=0,l2:ax-y+2=0.则“a=-3”是“l1∥l2”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,写出终边落在阴影部分的角α的集合(含边界){α|k•360°≤α≤45°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值(  )
A.-6B.-12C.-36D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若令cos80°=m,则tan(-440°)=(  )
A.$\frac{\sqrt{1-{m}^{2}}}{|m|}$B.$\frac{\sqrt{1-{m}^{2}}}{-m}$C.$\frac{\sqrt{1+{m}^{2}}}{m}$D.$\frac{\sqrt{1-{m}^{2}}}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β为锐角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则tan(α-β)=-$\frac{\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1.
(1)求f(x)的单调增区间
(2)用“五点法”在给定的坐标系中作出y=f(x)在长度为一个周期的闭区间上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在区间[-1,1]上的奇函数,且f(-1)=1,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$<0.
(1)解不等式f(x+$\frac{1}{2}$)<f(1-x);
(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案