精英家教网 > 高中数学 > 题目详情
2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值(  )
A.-6B.-12C.-36D.-3

分析 由x<0,可知-x>0,f(x)=$\frac{12}{x}$+3x=-[(-$\frac{12}{x}$)+(-3x)],由(-$\frac{12}{x}$)+(-3x)≥2$\sqrt{(-\frac{12}{x})•(-3x)}$=2×6=12,因此f(x)≤-12,即可求得f(x)的最大值.

解答 解:∵x<0,
∴-x>0,
f(x)=$\frac{12}{x}$+3x=-[(-$\frac{12}{x}$)+(-3x)],
∵(-$\frac{12}{x}$)+(-3x)≥2$\sqrt{(-\frac{12}{x})•(-3x)}$=2×6=12,
(当且仅当(-$\frac{12}{x}$)=(-3x),即x=-2时取最大值),
∴f(x)≤-12,
∴f(x)=$\frac{12}{x}$+3x的最大值为-12,
故答案选:B.

点评 本题考查基本不等式的应用,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设i是虚数单位,若复数a+$\frac{6+2i}{i-1}$(a∈R)是纯虚数,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:方程x2+2ax+1=0有两个大于-1的实数根,命题q:关于x的不等式ax2-ax+1>0的解集为R,若“p或q”与“¬q”同时为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α、β、γ满足0<α<β<γ<2π,若cos(x+α)+cos(x+β)+cos(x+γ)=0对任意实数x均成立,则α-β的值是(  )
A.$-\frac{π}{3}$B.$-\frac{2π}{3}$C.$-\frac{4π}{3}$D.$-\frac{2π}{3}$或$-\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一只蚂蚁在边长分别为2,$2\sqrt{3}$,4的三角形内爬行,某时刻此此蚂蚁距离顶点三角形的距离均不超过1的概率为(  )
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}π}}{6}$D.$1-\frac{{\sqrt{3}π}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面为函数y=xsinx+cosx的递增区间的是(  )
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.(π,2π)C.(0,$\frac{π}{2}$)D.(2π,3π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=(sinθ-2cosθ)+(sinθ+2cosθ)i是纯虚数,则sinθcosθ=(  )
A.-$\frac{5}{2}$B.-$\frac{2}{5}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.三棱锥P-ABC中,PA=4,∠PBA=∠PCA=90°,△ABC是边长为2的等边三角形,则三棱锥P-ABC的外接球球心到平面ABC的距离是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,则log3$\frac{y}{x}$的取值范围为[0,1].

查看答案和解析>>

同步练习册答案