分析 根据棱锥的特征可知PA为外接球的直径,再利用正四面体的结构特征求出正四面体的高.
解答
解:∵∠PBA=∠PCA=90°,∴PA的中点O为三棱锥P-ABC的外接球球心,
∴三棱锥O-ABC是棱长为2的正四面体,
过O作OM⊥平面ABC,垂足为M,连接BM并延长BM交AC于D,则D为AC的中点,
∴OD=BD=$\sqrt{3}$,MD=$\frac{1}{3}$BD=$\frac{\sqrt{3}}{3}$,
∴OM=$\sqrt{O{D}^{2}-M{D}^{2}}$=$\frac{2\sqrt{6}}{3}$.
故答案为:$\frac{2\sqrt{6}}{3}$.
点评 本题考查了棱锥与外接球的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{1-{m}^{2}}}{|m|}$ | B. | $\frac{\sqrt{1-{m}^{2}}}{-m}$ | C. | $\frac{\sqrt{1+{m}^{2}}}{m}$ | D. | $\frac{\sqrt{1-{m}^{2}}}{m}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | -$\frac{1}{5}$-$\frac{3}{5}$i | C. | -$\frac{1}{5}$+$\frac{3}{5}$i | D. | $\frac{1}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com