精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(Ⅰ)求b,c的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.

分析 (Ⅰ)求出函数的导数,得到关于b、c的不等式组,解出即可;
(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅲ)求出g(x)的导数,问题转化为a<${(x+\frac{2}{x})}_{max}$,从而求出a的范围即可.

解答 解:(Ⅰ)f'(x)=x2-ax+b,
由题意,得$\left\{\begin{array}{l}{f(0)=1}\\{f′(0)=0}\end{array}\right.$即$\left\{\begin{array}{l}{c=1}\\{b=0}\end{array}\right.$;
(Ⅱ)由(Ⅰ),得f'(x)=x2-ax=x(x-a)(a>0),
由f'(x)=0得x=0或x=a,
①当a>0时,当x∈(-∞,0)∪(a,+∞)时,f'(x)>0,
当x∈(0,a)时,f'(x)<0;
故当a>0时,函数f(x)的单调增区间为(-∞,0)与(a,+∞),单调减区间为(0,a);
②当a<0时,当x∈(-∞,a)∪(0,+∞)时,f'(x)>0,
当x∈(a,0)时,f'(x)<0;
故当a<0时,函数f(x)的单调增区间为(-∞,a)与(0,+∞),单调减区间为(a,0);
③当a=0时,当x∈R时,f'(x)=x2≥0
故当a=0时,f(x)增区间为(-∞,+∞).
(Ⅲ)g(x)=f(x)+2x,
g′(x)=x2-ax+2,依题意,存在x∈(-2,-1),
使不等式g′(x)=x2-ax+2<0成立,
即x∈(-2,-1)时,a<${(x+\frac{2}{x})}_{max}$=-2$\sqrt{2}$即可.
所以满足要求的a的取值范围是(-∞,-2$\sqrt{2}$).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若A={x|x2+1=0,x∈R},B={y|y=x,x∈R},则A∩B=∅,A∪B=R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设i是虚数单位,若复数a+$\frac{6+2i}{i-1}$(a∈R)是纯虚数,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知扇形的弧长为3,面积为6,则这个扇形的圆心角的弧度数为(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,输出的S的值是(  )
A.-6B.10C.-15D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,定义$\overrightarrow a×\overrightarrow b$为$\overrightarrow a$与$\overrightarrow b$的“向量积”,且$\overrightarrow a×\overrightarrow b$是一个向量,它的长度$|\overrightarrow a×\overrightarrow b|=|{\overrightarrow a}||{\overrightarrow b}|sinθ$,若$\overrightarrow u=(2,0),\overrightarrow u-\overrightarrow v=(1,-\sqrt{3})$,则|$\overrightarrow u×(\overrightarrow u-\overrightarrow v)$|=(  )
A.$4\sqrt{3}$B.$\sqrt{3}$C.6D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:方程x2+2ax+1=0有两个大于-1的实数根,命题q:关于x的不等式ax2-ax+1>0的解集为R,若“p或q”与“¬q”同时为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α、β、γ满足0<α<β<γ<2π,若cos(x+α)+cos(x+β)+cos(x+γ)=0对任意实数x均成立,则α-β的值是(  )
A.$-\frac{π}{3}$B.$-\frac{2π}{3}$C.$-\frac{4π}{3}$D.$-\frac{2π}{3}$或$-\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.三棱锥P-ABC中,PA=4,∠PBA=∠PCA=90°,△ABC是边长为2的等边三角形,则三棱锥P-ABC的外接球球心到平面ABC的距离是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案