精英家教网 > 高中数学 > 题目详情
2.设i是虚数单位,若复数a+$\frac{6+2i}{i-1}$(a∈R)是纯虚数,则a=(  )
A.4B.3C.2D.1

分析 利用复数代数形式的乘除运算化简,再由实部为0求得a值.

解答 解:∵a+$\frac{6+2i}{i-1}$=a+$\frac{(6+2i)(-1-i)}{(-1+i)(-1-i)}=a+\frac{-4-8i}{2}=a-2-4i$是纯虚数,
∴a=2.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知一个圆的圆心坐标为(-1,2),且过点(2,-2),求这个圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四棱锥P-ABCD中,顶点为P,从其它的顶点和各棱的中点中取3个,使它们和点P在同一平面内,不同的取法有(  )
A.40B.48C.56D.62

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)<4;
(2)若存在实数x0,使得f(x0)<log2$\sqrt{{t}^{2}-1}$成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如图所示的流程图,则输出的结果an是(  )
A.-5B.-4C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中
①“A∩B=A”成立的必要条件是“A?B”;
②“若x2+y2≠0,则x,y全不为0”的否定;
③“全等三角形是相似三角形”的否命题;
④?x∈R都有$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2成立.
真命题为②④(填所有真命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:ax+(a+2)y+1=0,l2:ax-y+2=0.则“a=-3”是“l1∥l2”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(Ⅰ)求b,c的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值(  )
A.-6B.-12C.-36D.-3

查看答案和解析>>

同步练习册答案