精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,定义$\overrightarrow a×\overrightarrow b$为$\overrightarrow a$与$\overrightarrow b$的“向量积”,且$\overrightarrow a×\overrightarrow b$是一个向量,它的长度$|\overrightarrow a×\overrightarrow b|=|{\overrightarrow a}||{\overrightarrow b}|sinθ$,若$\overrightarrow u=(2,0),\overrightarrow u-\overrightarrow v=(1,-\sqrt{3})$,则|$\overrightarrow u×(\overrightarrow u-\overrightarrow v)$|=(  )
A.$4\sqrt{3}$B.$\sqrt{3}$C.6D.$2\sqrt{3}$

分析 根据条件容易求出$\overrightarrow{u}•(\overrightarrow{u}-\overrightarrow{v})$,$|\overrightarrow{u}|,|\overrightarrow{u}-\overrightarrow{v}|$的值,进而求出$cos<\overrightarrow{u},\overrightarrow{u}-\overrightarrow{v}>$,从而得到$sin<\overrightarrow{u},\overrightarrow{u}-\overrightarrow{v}>$的值,带入向量积长度的计算公式便可求出|$\overrightarrow u×(\overrightarrow u-\overrightarrow v)$|的值.

解答 解:根据条件,$\overrightarrow{u}•(\overrightarrow{u}-\overrightarrow{v})$=2,$|\overrightarrow{u}|=2,|\overrightarrow{u}-\overrightarrow{v}|=2$;
∴cos$<\overrightarrow{u},\overrightarrow{u}-\overrightarrow{v}>$=$\frac{2}{2×2}=\frac{1}{2}$;
∴$sin<\overrightarrow{u},\overrightarrow{u}-\overrightarrow{v}>=\frac{\sqrt{3}}{2}$;
∴$|\overrightarrow{u}×(\overrightarrow{u}-\overrightarrow{v})|=|\overrightarrow{u}||\overrightarrow{u}-\overrightarrow{v}|sin<\overrightarrow{u},\overrightarrow{u}-\overrightarrow{v}>$=$2×2×\frac{\sqrt{3}}{2}=2\sqrt{3}$.
故选D.

点评 考查对向量积的理解,能根据向量积长度的计算公式求向量积的长度,向量数量积的坐标运算,以及向量夹角的余弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.一个等差数列前20项和为75,其中的奇数项和与偶数项和之比为1:2,求公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中
①“A∩B=A”成立的必要条件是“A?B”;
②“若x2+y2≠0,则x,y全不为0”的否定;
③“全等三角形是相似三角形”的否命题;
④?x∈R都有$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2成立.
真命题为②④(填所有真命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线$x+\sqrt{3}y-2\sqrt{3}=0$与圆x2+y2=4交于A,B两点,则$\overrightarrow{OA}•\overrightarrow{OB}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(Ⅰ)求b,c的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直三棱柱ABC-A1B1C1中,AC=BC,点D在线段AB上,且平面B1CD⊥平面ABB1A1
(1)确定点D的位置并证明;
(2)证明:AC1∥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ex-ax在(3,+∞)单调递增,则实数a的取值范围是(-∞,e3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(1)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;
(2)从(1)中方式得到的5人中在抽取2人作为本次活动的获奖者,求[50,60)年龄段仅1人获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a,b>0)经过点M(2,$\sqrt{2}$),N($\sqrt{6}$,1),O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒在两个交点A、B且$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案