精英家教网 > 高中数学 > 题目详情
11.在直三棱柱ABC-A1B1C1中,AC=BC,点D在线段AB上,且平面B1CD⊥平面ABB1A1
(1)确定点D的位置并证明;
(2)证明:AC1∥平面B1CD.

分析 (1)D为AB的中点,可通过CD⊥AB,CD⊥BB1得出CD⊥平面ABB1A1,故而平面B1CD⊥平面ABB1A1
(2)连结BC1,交B1C于M,连接MD.则MD为△ABC1的中位线,故而MD∥AC1,于是AC1∥平面B1CD.

解答 解:(1)D为AB的中点,
证明如下:
∵AC=BC,D是AB的中点,
∴CD⊥AB,
∵BB1⊥平面ABC,CD?平面ABC,
∴BB1⊥CD,又AB?平面ABB1A1,BB1?平面ABB1A1,AB∩BB1=B,
∴CD⊥平面ABB1A1,又CD?平面B1CD,
∴平面B1CD⊥平面ABB1A1
(2)连结BC1,交B1C于M,连接MD.
∵四边形BCC1B1是矩形,
∴M是BC1的中点,又D是AB的中点,
∴MD∥AC1
又MD?平面B1CD,AC1?平面B1CD,
∴AC1∥平面B1CD.

点评 本题考查了面面垂直的判定定理,线面平行的判定定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.集合M={x|x≤1或x≥3},N={x|x≤0或x≥2},则M∩N={x|x≤0或x≥3},M∪N={x|x≤1或x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=2+i,则$\frac{{z}^{2}-2z}{z-1}$=(  )
A.$\frac{1}{2}+\frac{3}{2}$iB.-$\frac{1}{2}-\frac{3}{2}$iC.-$\frac{1}{2}-\frac{1}{2}$iD.$\frac{1}{2}+\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x,y满足约束条件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}}\right.$,则$\frac{y}{x-1}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,定义$\overrightarrow a×\overrightarrow b$为$\overrightarrow a$与$\overrightarrow b$的“向量积”,且$\overrightarrow a×\overrightarrow b$是一个向量,它的长度$|\overrightarrow a×\overrightarrow b|=|{\overrightarrow a}||{\overrightarrow b}|sinθ$,若$\overrightarrow u=(2,0),\overrightarrow u-\overrightarrow v=(1,-\sqrt{3})$,则|$\overrightarrow u×(\overrightarrow u-\overrightarrow v)$|=(  )
A.$4\sqrt{3}$B.$\sqrt{3}$C.6D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.点集$M=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.θ是参数,0<θ<π}\right.}\right\}$,N={(x,y)|y=x+b},若M∩N≠∅,则b应满足(  )
A.$-3\sqrt{2}≤b≤3\sqrt{2}$B.$-3\sqrt{2}<b<-3$C.$0≤b≤3\sqrt{2}$D.$-3<b≤3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在斜三棱柱ABC-A1B1C1中BC⊥CC1,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.
(1)证明:BC⊥平面ACC1A1
(2)若二面角A-A1B-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(x+a)-x,a∈R.
(1)当a=-1时,求f(x)的单调区间;
(2)若x≥1时,不等式${e^{f(x)}}+\frac{a}{2}{x^2}>1$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是一个算法的程序框图,当输入x的值为5时,则其输出的结果是(  )
A.0.5B.1C.1.5D.2

查看答案和解析>>

同步练习册答案