分析 (1)由已知可得A1D⊥平面ABC,进一步得A1D⊥BC,再由BC⊥CC1,得BC⊥AA1,然后利用线面垂直的判定得答案;
(2)利用线面垂直的性质可得BC⊥AC,以C为原点,CA、CB所在直线分别为x、y轴,过C与平面ABC垂直的直线为z轴建立如图所示空间直角坐标系C-xyz,设A1D=a,得A,A1,B,C1 的坐标,然后求出平面AA1B与平面A1BC的一个法向量,再求出两个法向量所成角的余弦值,进一步得到二面角A-A1B-C的余弦值.
解答 (1)证明:由已知得,A1D⊥平面ABC,又BC?平面ABC,∴A1D⊥BC,![]()
∵BC⊥CC1,CC1∥AA1,∴BC⊥AA1,又A1D∩AA1=A1,
∴BC⊥平面ACC1A1;
(2)解:由(1)及AC?平面ACC1A1,得BC⊥AC,
以C为原点,CA、CB所在直线分别为x、y轴,过C与平面ABC垂直的直线为z轴建立如图所示空间直角坐标系C-xyz,
设A1D=a,则A(2,0,0),A1(1,0,a),B(0,2,0),C1(-1,0,a),
∴$\overrightarrow{{A}_{1}B}=(-1,2,-a)$,$\overrightarrow{A{C}_{1}}=(-3,0,a)$,
又由已知得$\overrightarrow{{A}_{1}B}•\overrightarrow{A{C}_{1}}=0$,∴3-a2=0,得a=$\sqrt{3}$,
∴$\overrightarrow{A{A}_{1}}=(-1,0,\sqrt{3})$,$\overrightarrow{AB}=(-2,2,0)$,
设平面AA1B的法向量$\overrightarrow{n}=(x,y,z)$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=0}\\{\overrightarrow{n}•\overrightarrow{AB}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-x+\sqrt{3}z=0}\\{-2x+2y=0}\end{array}\right.$,令z=$\sqrt{3}$,则x=y=3.
∴$\overrightarrow{n}=(3,3,\sqrt{3})$,
平面A1BC的法向量$\overrightarrow{k}=(\sqrt{3},0,-1)$,
∴cos<$\overrightarrow{n},\overrightarrow{k}$>=$\frac{\overrightarrow{n}•\overrightarrow{k}}{|\overrightarrow{n}||\overrightarrow{k}|}=\frac{2\sqrt{3}}{2\sqrt{21}}=\frac{\sqrt{7}}{7}$.
∴二面角A-A1B-C的余弦值为-$\frac{\sqrt{7}}{7}$.
点评 本题考查直线与平面垂直的判断,考查了利用空间向量求二面角的平面角,考查计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<1} | B. | {x|0≤x<1} | C. | {x|-3<x<2} | D. | {x|-3<x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$i | B. | $\frac{2}{5}$ | C. | -$\frac{1}{5}$i | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com