精英家教网 > 高中数学 > 题目详情
7.下面为函数y=xsinx+cosx的递增区间的是(  )
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.(π,2π)C.(0,$\frac{π}{2}$)D.(2π,3π)

分析 求导得y'=xcosx,令导函数大于零,求出x的范围即可.

解答 解:∵y=xsinx+cosx,
∴y'=sinx+xcosx-sinx=xcosx,
即xcosx>0,
显然0<x<$\frac{π}{2}$时,cosx>0,符合题意,
故选:C.

点评 考察了符合函数求导和利用导函数判断函数的单调性,是常规题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.下列命题中
①“A∩B=A”成立的必要条件是“A?B”;
②“若x2+y2≠0,则x,y全不为0”的否定;
③“全等三角形是相似三角形”的否命题;
④?x∈R都有$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2成立.
真命题为②④(填所有真命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ex-ax在(3,+∞)单调递增,则实数a的取值范围是(-∞,e3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(1)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;
(2)从(1)中方式得到的5人中在抽取2人作为本次活动的获奖者,求[50,60)年龄段仅1人获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值(  )
A.-6B.-12C.-36D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\frac{1}{{e}^{x}+a}$+b(a≠-1)是奇函数,则b(a+1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若令cos80°=m,则tan(-440°)=(  )
A.$\frac{\sqrt{1-{m}^{2}}}{|m|}$B.$\frac{\sqrt{1-{m}^{2}}}{-m}$C.$\frac{\sqrt{1+{m}^{2}}}{m}$D.$\frac{\sqrt{1-{m}^{2}}}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a,b>0)经过点M(2,$\sqrt{2}$),N($\sqrt{6}$,1),O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒在两个交点A、B且$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某工厂新招了8名工人,其中有2名车工和3名钳工,现将这8名工人平均分配给甲、乙两个车间,那么车工和钳工均不能分配到同一个车间的概率为$\frac{18}{35}$.

查看答案和解析>>

同步练习册答案