精英家教网 > 高中数学 > 题目详情
19.已知n∈N*,k∈N*,k≤n.求证:
(1)(k+1)C${\;}_{n+1}^{k+1}$=(n+1)C${\;}_{n}^{k}$;
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.

分析 (1)由n∈N*,k∈N*,k≤n.利用组合数的计算公式可得(k+1)C${\;}_{n+1}^{k+1}$=(k+1)×$\frac{(n+1)!}{(k+1)!(n-k)!}$=$\frac{(n+1)•n!}{k!(n-k)!}$,即可证明.
(2)由(1)可知:$\frac{1}{k+1}{C}_{n}^{k}$=$\frac{1}{n+1}$${∁}_{n+1}^{k+1}$,再利用二项式定理的性质即可得出.

解答 证明:(1)∵n∈N*,k∈N*,k≤n.
(k+1)C${\;}_{n+1}^{k+1}$=(k+1)×$\frac{(n+1)!}{(k+1)!(n-k)!}$=$\frac{(n+1)•n!}{k!(n-k)!}$=(n+1)C${\;}_{n}^{k}$.
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.
(2)由(1)可知:$\frac{1}{k+1}{C}_{n}^{k}$=$\frac{1}{n+1}$${∁}_{n+1}^{k+1}$,
令k=0,1,2,3,…,n,得:C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{1}{n+1}$(${∁}_{n+1}^{1}$+${∁}_{n+1}^{2}$+…+${∁}_{n+1}^{n+1}$)=$\frac{1}{n+1}$[(1+1)n+1-1]=
$\frac{{2}^{n+1}-1}{n+1}$.
∴原式得证.

点评 本题考查了二项式定理的应用、组合数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.根据给出的数塔猜测123456×9+7=(  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定义域为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个实数根,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{3}}$)∪(${\frac{1}{3}$,+∞)B.(-∞,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}}$]∪[${\frac{1}{3},2}$)D.[-2,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(x+1)a+1(a>0),则“a是奇数”是“x=-1是函数f(x)的一个极值点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在区间[-1,1]上的奇函数,且f(-1)=1,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$<0.
(1)解不等式f(x+$\frac{1}{2}$)<f(1-x);
(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为(  )
A.6+$\frac{2π}{3}$B.8+$\frac{π}{3}$C.4+$\frac{2π}{3}$D.4+$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列计算S的值的选项中,不能设计算法求解的是(  )
A.S=1+2+3+…+10000000B.S=1+2+3+4
C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求角C的值;
(Ⅱ)若c=$\sqrt{3}$,求△ABC的周长的取值范围.

查看答案和解析>>

同步练习册答案